Molecular Aspects of Bioelectricity

Nonfiction, Science & Nature, Nature, Animals, Mammals, Science, Biological Sciences, Zoology
Cover of the book Molecular Aspects of Bioelectricity by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781483189857
Publisher: Elsevier Science Publication: April 24, 2014
Imprint: Pergamon Language: English
Author:
ISBN: 9781483189857
Publisher: Elsevier Science
Publication: April 24, 2014
Imprint: Pergamon
Language: English

Molecular Aspects of Bioelectricity describes the self-organization in molecular and cellular networks. This book evaluates the chemical representation of ion flux gating in excitable biomembranes and addresses the theoretical implication of liganding reactions in axonal sodium channel gating. It also strongly demonstrates the ligand interactions of crustacean axonal membrane.
The opening chapters deal with the biochemical studies of the structure, mechanism, and differentiation of the voltage-sensitive sodium channel; and biochemical cycle of impedance variation in axonal membranes. The succeeding chapters examine the effect of various compounds on the phosphorylation of nerve proteins and the molecular aspects of the actions of cyclic nucleotides at synapses. These topics are followed by discussions of the acetylcholine and choline acetyltransferase, as well as the polymorphism of cholinesterase in vertebrates. The closing chapters are devoted to the physical factors determining gated flux from and into sealed membrane fragments.
The book can provide useful information to biologists, students, and researchers.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Molecular Aspects of Bioelectricity describes the self-organization in molecular and cellular networks. This book evaluates the chemical representation of ion flux gating in excitable biomembranes and addresses the theoretical implication of liganding reactions in axonal sodium channel gating. It also strongly demonstrates the ligand interactions of crustacean axonal membrane.
The opening chapters deal with the biochemical studies of the structure, mechanism, and differentiation of the voltage-sensitive sodium channel; and biochemical cycle of impedance variation in axonal membranes. The succeeding chapters examine the effect of various compounds on the phosphorylation of nerve proteins and the molecular aspects of the actions of cyclic nucleotides at synapses. These topics are followed by discussions of the acetylcholine and choline acetyltransferase, as well as the polymorphism of cholinesterase in vertebrates. The closing chapters are devoted to the physical factors determining gated flux from and into sealed membrane fragments.
The book can provide useful information to biologists, students, and researchers.

More books from Elsevier Science

Cover of the book Sea Otter Conservation by
Cover of the book Advances in Heterocyclic Chemistry by
Cover of the book Radiochemistry and Nuclear Chemistry by
Cover of the book Advances in Experimental Social Psychology by
Cover of the book Modification of Polymer Properties by
Cover of the book Ancestral DNA, Human Origins, and Migrations by
Cover of the book Advances in Batteries for Medium and Large-Scale Energy Storage by
Cover of the book Carbon Nanotube-Reinforced Polymers by
Cover of the book Finance Director's Handbook by
Cover of the book The Paper-making Machine by
Cover of the book Platform Technologies in Drug Discovery and Validation by
Cover of the book Developments in Surface Contamination and Cleaning, Volume 4 by
Cover of the book Advances in Food and Nutrition Research by
Cover of the book Radiative Heat Transfer by
Cover of the book Conducting Behavioral Consultation in Educational and Treatment Settings by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy