Nanoelectronics

A Molecular View

Nonfiction, Science & Nature, Science, Other Sciences, Nanostructures, Technology, Nanotechnology
Cover of the book Nanoelectronics by Avik Ghosh, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Avik Ghosh ISBN: 9789813144514
Publisher: World Scientific Publishing Company Publication: September 29, 2016
Imprint: WSPC Language: English
Author: Avik Ghosh
ISBN: 9789813144514
Publisher: World Scientific Publishing Company
Publication: September 29, 2016
Imprint: WSPC
Language: English

This book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.

Contents:

  • Nano-Electronics: Cool Science vs Smart Technology
  • Equilibrium Tools: Quantum Mechanics and Thermodynamics
  • Nonequilibrium Concepts: The Nature of Transport Equations
  • Adventures and Applications: Ballistic Quantum Flow
  • Controlling Electron Flow: Switching and Gating
  • A Smattering of Scattering: Resistance, Decoherence and Dissipation
  • When Electrons Tango! Dealing with Nonequilibrium Correlations
  • Looking Back and Looking Ahead: Novel Transport vs Novel Devices

Readership: Advanced undergraduate students, graduate students and researchers interested in nanoelectronics.
Key Features:

  • The book connects 'top-down' concepts in solid-state devices taught in electrical engineering classes (e.g. MOSFETs, mobility, drift-diffusion) with 'bottom-up' approaches taught in physics and chemistry such as quantum transport, strong correlation effects, decoherence, hopping, Mott transitions and orbital chemistry
  • The book illustrates a lot of topics through hands-on exercises called 'case-studies'. This extends to emerging materials like 2D, and emerging concepts like spintronics, nano-magnetic memory and logic
  • The book is timely and connects with emerging technology, especially with low-power electronics. A few chapters are devoted to applying concepts to understand the Boltzmann tyranny that plagues today's devices. In other words, fundamental concepts are connected to neuromorphic processes, low-power logic and nonvolatile memory
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.

Contents:

Readership: Advanced undergraduate students, graduate students and researchers interested in nanoelectronics.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Analysis on Gaussian Spaces by Avik Ghosh
Cover of the book An Introduction to Differential Equations by Avik Ghosh
Cover of the book Application of Materials Science and Environmental Materials (AMSEM2015) by Avik Ghosh
Cover of the book Modeling Developing Countries' Policies in General Equilibrium by Avik Ghosh
Cover of the book Solar Energy by Avik Ghosh
Cover of the book Globalisation, Migration and Health by Avik Ghosh
Cover of the book Matrix Functions and Matrix Equations by Avik Ghosh
Cover of the book Himalaya Calling by Avik Ghosh
Cover of the book Advances in Geosciences by Avik Ghosh
Cover of the book Doing Mathematics by Avik Ghosh
Cover of the book Hyperbolic Problems by Avik Ghosh
Cover of the book Reflections by Avik Ghosh
Cover of the book The Road to Scientific Success by Avik Ghosh
Cover of the book Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras by Avik Ghosh
Cover of the book Robotic Intelligence by Avik Ghosh
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy