Neurobiology of Monotremes brings together current information on the development, structure, function and behavioural ecology of the monotremes. The monotremes are an unusual and evolutionarily important group of mammals showing striking behavioural and physiological adaptations to their niches. They are the only mammals exhibiting electroreception (in the trigeminal sensory pathways) and the echidna shows distinctive olfactory specialisations. The authors aim to close the current gap in knowledge between the genes and developmental biology of monotremes on the one hand, and the adult structure, function and ecology of monotremes on the other. They explore how the sequence 'embryonic structure › adult structure › behaviour' is achieved in monotremes and how this differs from other mammals. The work also combines a detailed review of the neurobiology of monotremes with photographic and diagrammatic atlases of the sectioned adult brains and peripheral nervous system of the short-beaked echidna and platypus. Pairing of a detailed review of the field with the first published brain atlases of two of the three living monotremes will allow the reader to immediately relate key points in the text to features in the atlases and will extend a universal system of brain nomenclature developed in eutherian brain atlases by G Paxinos and colleagues to monotremes.
Neurobiology of Monotremes brings together current information on the development, structure, function and behavioural ecology of the monotremes. The monotremes are an unusual and evolutionarily important group of mammals showing striking behavioural and physiological adaptations to their niches. They are the only mammals exhibiting electroreception (in the trigeminal sensory pathways) and the echidna shows distinctive olfactory specialisations. The authors aim to close the current gap in knowledge between the genes and developmental biology of monotremes on the one hand, and the adult structure, function and ecology of monotremes on the other. They explore how the sequence 'embryonic structure › adult structure › behaviour' is achieved in monotremes and how this differs from other mammals. The work also combines a detailed review of the neurobiology of monotremes with photographic and diagrammatic atlases of the sectioned adult brains and peripheral nervous system of the short-beaked echidna and platypus. Pairing of a detailed review of the field with the first published brain atlases of two of the three living monotremes will allow the reader to immediately relate key points in the text to features in the atlases and will extend a universal system of brain nomenclature developed in eutherian brain atlases by G Paxinos and colleagues to monotremes.