Non-equilibrium Phenomena in Confined Soft Matter

Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Physics, Mechanics
Cover of the book Non-equilibrium Phenomena in Confined Soft Matter by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319219486
Publisher: Springer International Publishing Publication: August 28, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319219486
Publisher: Springer International Publishing
Publication: August 28, 2015
Imprint: Springer
Language: English

This book deals with those properties of non-equilibrium soft matter that deviate greatly from the bulk properties as a result of nanoscale confinement.The ultimate physical origin of these confinement effects is not yet fully understood. At the state of the art, the discussion on confinement effects focuses on equilibrium properties, finite size effects and interfacial interactions. However this is a limited vision which does not fully capture the peculiar behaviour of soft matter under confinement and some exotic phenomena that are displayed. This volume will be organized in the following three main themes. Equilibration and physical aging: treating non-equilibrium via the formal methodology of statistical physics in bulk, we analyse physical origin of the non-equilibrium character of thin polymer. We then focus on the impact of nanoconfinement on the equilibration of glasses of soft matter (a process of tremendous technological interest, commonly known as physical aging), comparing the latest trends of polymers in experiments, simulations with those of low-molecular weight glass formers. Irreversible adsorption: the formation of stable adsorbed layers occurs at timescales much larger than the time necessary to equilibrate soft matter in bulk. Recent experimental evidence show a strong correlation between the behaviour of polymers under confinement and the presence of a layer irreversibly adsorbed onto the substrate. This correlation hints at the possibility to tailor the properties of ultrathin films by controlling the adsorption kinetics. The book reports physical aspects of irreversible chain adsorption, such as the dynamics, structure, morphology, and crystallization of adsorbed layers. Glass transition and material properties: this section of the book focuses on the spread of absolute values in materials properties of confined systems, when measured by different experimental and computation techniques and a new method to quantify the effects of confinement in thin films and nanocomposites independently on the investigation procedure will be presented.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book deals with those properties of non-equilibrium soft matter that deviate greatly from the bulk properties as a result of nanoscale confinement.The ultimate physical origin of these confinement effects is not yet fully understood. At the state of the art, the discussion on confinement effects focuses on equilibrium properties, finite size effects and interfacial interactions. However this is a limited vision which does not fully capture the peculiar behaviour of soft matter under confinement and some exotic phenomena that are displayed. This volume will be organized in the following three main themes. Equilibration and physical aging: treating non-equilibrium via the formal methodology of statistical physics in bulk, we analyse physical origin of the non-equilibrium character of thin polymer. We then focus on the impact of nanoconfinement on the equilibration of glasses of soft matter (a process of tremendous technological interest, commonly known as physical aging), comparing the latest trends of polymers in experiments, simulations with those of low-molecular weight glass formers. Irreversible adsorption: the formation of stable adsorbed layers occurs at timescales much larger than the time necessary to equilibrate soft matter in bulk. Recent experimental evidence show a strong correlation between the behaviour of polymers under confinement and the presence of a layer irreversibly adsorbed onto the substrate. This correlation hints at the possibility to tailor the properties of ultrathin films by controlling the adsorption kinetics. The book reports physical aspects of irreversible chain adsorption, such as the dynamics, structure, morphology, and crystallization of adsorbed layers. Glass transition and material properties: this section of the book focuses on the spread of absolute values in materials properties of confined systems, when measured by different experimental and computation techniques and a new method to quantify the effects of confinement in thin films and nanocomposites independently on the investigation procedure will be presented.

More books from Springer International Publishing

Cover of the book Concepts in Cell Biology - History and Evolution by
Cover of the book Inclusive Mathematics Education by
Cover of the book Combatting Cybercrime and Cyberterrorism by
Cover of the book Youth 2.0: Social Media and Adolescence by
Cover of the book Market-Consistent Actuarial Valuation by
Cover of the book Nanomaterials for Liquid Chromatography and Laser Desorption/Ionization Mass Spectrometry by
Cover of the book Sex, Crime, Drugs, and Just Plain Stupid Behaviors by
Cover of the book Machine Learning in Medical Imaging by
Cover of the book Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products by
Cover of the book Computational Information Geometry by
Cover of the book Blast Waves by
Cover of the book Exotic Nuclear Excitations: The Transverse Wobbling Mode in 135 Pr by
Cover of the book The Pedagogy of English as an International Language by
Cover of the book Digital Forensics and Cyber Crime by
Cover of the book Orexin and Sleep by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy