Author: | Klaus Deimling | ISBN: | 9780486132358 |
Publisher: | Dover Publications | Publication: | October 9, 2013 |
Imprint: | Dover Publications | Language: | English |
Author: | Klaus Deimling |
ISBN: | 9780486132358 |
Publisher: | Dover Publications |
Publication: | October 9, 2013 |
Imprint: | Dover Publications |
Language: | English |
Hailed as "eminently suitable as a text for a graduate course" by the Bulletin of the American Mathematical Society, this volume offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It offers extensive commentary and many examples in addition to an abundance of interesting, challenging exercises.
Starting with coverage of the development of the Brower degree and its applications, the text proceeds to examinations of degree mappings for infinite dimensional spaces and surveys of monotone and accretive mappings. Subsequent chapters explore the inverse function theory, the implicit function theory, and Newton's methods as well as fixed-point theory, solutions to cones, and the Galerkin method of studying nonlinear equations. The final chapters address extremal problems—including convexity, Lagrange multipliers, and mini-max theorems—and offer an introduction into bifurcation theory. Suitable for graduate-level mathematics courses, this volume also serves as a reference for professionals.
Hailed as "eminently suitable as a text for a graduate course" by the Bulletin of the American Mathematical Society, this volume offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It offers extensive commentary and many examples in addition to an abundance of interesting, challenging exercises.
Starting with coverage of the development of the Brower degree and its applications, the text proceeds to examinations of degree mappings for infinite dimensional spaces and surveys of monotone and accretive mappings. Subsequent chapters explore the inverse function theory, the implicit function theory, and Newton's methods as well as fixed-point theory, solutions to cones, and the Galerkin method of studying nonlinear equations. The final chapters address extremal problems—including convexity, Lagrange multipliers, and mini-max theorems—and offer an introduction into bifurcation theory. Suitable for graduate-level mathematics courses, this volume also serves as a reference for professionals.