Nonparametric Bayesian Inference in Biostatistics

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Science, Biological Sciences
Cover of the book Nonparametric Bayesian Inference in Biostatistics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319195186
Publisher: Springer International Publishing Publication: July 25, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319195186
Publisher: Springer International Publishing
Publication: July 25, 2015
Imprint: Springer
Language: English

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

More books from Springer International Publishing

Cover of the book Politics and Quality of Life by
Cover of the book Model and Data Engineering by
Cover of the book Models, Algorithms, and Technologies for Network Analysis by
Cover of the book Geological Storage of CO2 – Long Term Security Aspects by
Cover of the book From Aristotle to Schrödinger by
Cover of the book Discriminative Pattern Discovery on Biological Networks by
Cover of the book Politics of Water Conservation by
Cover of the book Working with Stem Cells by
Cover of the book Virtual Reality and Augmented Reality by
Cover of the book Plants and Health by
Cover of the book Algorithms for Computational Biology by
Cover of the book Globalization and the Challenges of Public Administration by
Cover of the book Neoliberal Ebola by
Cover of the book Constraint Solving and Planning with Picat by
Cover of the book The Development of Immunologic Competence by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy