Optical Imaging of Cancer

Clinical Applications

Nonfiction, Health & Well Being, Medical, Specialties, Oncology, Medical Science, Pharmacology
Cover of the book Optical Imaging of Cancer by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387938745
Publisher: Springer New York Publication: October 3, 2009
Imprint: Springer Language: English
Author:
ISBN: 9780387938745
Publisher: Springer New York
Publication: October 3, 2009
Imprint: Springer
Language: English

To describe principles of optical imaging including chemistry and physics of fluorescence, limitations/advantages of optical imaging compared to metabolic and anatomic imaging.

Describe hardware adapted for small animal imaging and for clinical applications: endoscopes and operative microscopes.

Outline FDA approved and newer optical imaging probes. Include discussion of chemistry and linkage to other proteins. Review current techniques to image cancer and the development of techniques to specifically image cancer cells.

Review use of exploiting differences in tissue autofluorescence to diagnose and treat cancer. Include agents such as 5-aminoleculinic acid.

Review mechanisms that require proteolytic processing within the tumor to become active fluorophores.

Review use of cancer selective proteins to localize probes to cancer cells: include toxins, antibodies, and minibodies.

Introduction of plasmids, viruses or other genetic material may be used to express fluorescent agents in vivo. This chapter will review multiple vectors and delivery mechanisms of optical imaging cassettes.Preclinical investigations into the use of optical contrast agents for the detection of primary tumors in conventional and orthotopic models will be discussed.

Preclinical investigations into the use of optical contrast agents for the detection of metastatic tumors in mouse models will be discussed.

Use of targeted and non-specific optical contrast agents have been used for the detection of sentinel lymph node detection. These applications and how they differ from other applications will be discussed.

Because of the unique difficulty of identifying tumor from normal tissue in brain tissue, a separate chapter would be needed. More clinical data is available for this cancer type than any other.

Discussion of potential clinical applications for optical imaging and an assessment of the potential market.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

To describe principles of optical imaging including chemistry and physics of fluorescence, limitations/advantages of optical imaging compared to metabolic and anatomic imaging.

Describe hardware adapted for small animal imaging and for clinical applications: endoscopes and operative microscopes.

Outline FDA approved and newer optical imaging probes. Include discussion of chemistry and linkage to other proteins. Review current techniques to image cancer and the development of techniques to specifically image cancer cells.

Review use of exploiting differences in tissue autofluorescence to diagnose and treat cancer. Include agents such as 5-aminoleculinic acid.

Review mechanisms that require proteolytic processing within the tumor to become active fluorophores.

Review use of cancer selective proteins to localize probes to cancer cells: include toxins, antibodies, and minibodies.

Introduction of plasmids, viruses or other genetic material may be used to express fluorescent agents in vivo. This chapter will review multiple vectors and delivery mechanisms of optical imaging cassettes.Preclinical investigations into the use of optical contrast agents for the detection of primary tumors in conventional and orthotopic models will be discussed.

Preclinical investigations into the use of optical contrast agents for the detection of metastatic tumors in mouse models will be discussed.

Use of targeted and non-specific optical contrast agents have been used for the detection of sentinel lymph node detection. These applications and how they differ from other applications will be discussed.

Because of the unique difficulty of identifying tumor from normal tissue in brain tissue, a separate chapter would be needed. More clinical data is available for this cancer type than any other.

Discussion of potential clinical applications for optical imaging and an assessment of the potential market.

More books from Springer New York

Cover of the book Calculus II by
Cover of the book Surgical Techniques for Kidney Cancer by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Pediatric Infectious Disease by
Cover of the book Cognitive Remediation for Brain Injury and Neurological Illness by
Cover of the book The Compressed Word Problem for Groups by
Cover of the book Come On! by
Cover of the book Distributed, Embedded and Real-time Java Systems by
Cover of the book Percutaneous Image-Guided Biopsy by
Cover of the book Dendritic Cells in Cancer by
Cover of the book The Organizational Sweet Spot by
Cover of the book How Nature Works by
Cover of the book New Perspectives in Partial Least Squares and Related Methods by
Cover of the book Health Informatics in the Cloud by
Cover of the book Clinical Perspectives in the Management of Down Syndrome by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy