Physical Models of Cell Motility

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Technology, Engineering
Cover of the book Physical Models of Cell Motility by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319244488
Publisher: Springer International Publishing Publication: December 16, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319244488
Publisher: Springer International Publishing
Publication: December 16, 2015
Imprint: Springer
Language: English

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

More books from Springer International Publishing

Cover of the book Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations by
Cover of the book Continuous Nowhere Differentiable Functions by
Cover of the book Representation and Reality in Humans, Other Living Organisms and Intelligent Machines by
Cover of the book Scleroderma by
Cover of the book Enhanced Surface Imaging of Crustal Deformation by
Cover of the book Theatre Music and Sound at the RSC by
Cover of the book Situated Dialog in Speech-Based Human-Computer Interaction by
Cover of the book Nutrigenomics by
Cover of the book Socio-Political Order and Security in the Arab World by
Cover of the book 5G Heterogeneous Networks by
Cover of the book Modeling and Control for a Blended Wing Body Aircraft by
Cover of the book Bioinformatics Research and Applications by
Cover of the book Natural Disasters and Individual Behaviour in Developing Countries by
Cover of the book Energy Conversion and Management by
Cover of the book Varying Gravity by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy