Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Volume 2: In Situ Characterization Techniques for Low Temperature Fuel Cells

Nonfiction, Science & Nature, Technology, Power Resources
Cover of the book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780857095480
Publisher: Elsevier Science Publication: February 20, 2012
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780857095480
Publisher: Elsevier Science
Publication: February 20, 2012
Imprint: Woodhead Publishing
Language: English

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.

With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics.

  • Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance
  • Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry
  • Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.

With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics.

More books from Elsevier Science

Cover of the book The Coming of Materials Science by
Cover of the book A Synopsis of Ophthalmology by
Cover of the book Assessment of Research Needs for Advanced Fuel Cells by
Cover of the book Advances in Experimental Social Psychology by
Cover of the book Advances in Food Authenticity Testing by
Cover of the book Long-term Ecological Change in the Northern Gulf of Alaska by
Cover of the book Nonmotor Parkinson's: The Hidden Face by
Cover of the book Peptide and Protein Delivery by
Cover of the book PCR Strategies by
Cover of the book Basic Aspects of Catechol-O-Methyltransferase and the Clinical Applications of its Inhibitors by
Cover of the book A Quick Guide to API 510 Certified Pressure Vessel Inspector Syllabus by
Cover of the book Indexing by
Cover of the book Animal Models for Medications Screening to Treat Addiction by
Cover of the book Biomedical Engineering in Gastrointestinal Surgery by
Cover of the book Scallops by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy