Author: | Madhavan Swaminathan, Ege Engin | ISBN: | 9780132797177 |
Publisher: | Pearson Education | Publication: | November 19, 2007 |
Imprint: | Prentice Hall | Language: | English |
Author: | Madhavan Swaminathan, Ege Engin |
ISBN: | 9780132797177 |
Publisher: | Pearson Education |
Publication: | November 19, 2007 |
Imprint: | Prentice Hall |
Language: | English |
Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art.
Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise.
The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications.
The authors
This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.
Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art.
Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise.
The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications.
The authors
This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.