Practical Low Power Digital VLSI Design

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Electricity
Cover of the book Practical Low Power Digital VLSI Design by Gary K. Yeap, Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Gary K. Yeap ISBN: 9781461560654
Publisher: Springer US Publication: December 6, 2012
Imprint: Springer Language: English
Author: Gary K. Yeap
ISBN: 9781461560654
Publisher: Springer US
Publication: December 6, 2012
Imprint: Springer
Language: English

Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology.
Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon.
Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology.
Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon.
Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.

More books from Springer US

Cover of the book Security Informatics by Gary K. Yeap
Cover of the book Coronary flow reserve - measurement and application: Focus on transthoracic Doppler echocardiography by Gary K. Yeap
Cover of the book Genomic Instability and Immortality in Cancer by Gary K. Yeap
Cover of the book Toxic Turmoil by Gary K. Yeap
Cover of the book Biology of the Uterus by Gary K. Yeap
Cover of the book Lay Epistemics and Human Knowledge by Gary K. Yeap
Cover of the book Gender Dysphoria by Gary K. Yeap
Cover of the book Urolithiasis 2 by Gary K. Yeap
Cover of the book Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications by Gary K. Yeap
Cover of the book Engine Emissions by Gary K. Yeap
Cover of the book International Investment, Political Risk, and Growth by Gary K. Yeap
Cover of the book Carbon Nanotube Electronics by Gary K. Yeap
Cover of the book Design of Interconnection Networks for Programmable Logic by Gary K. Yeap
Cover of the book Limits of Medicine by Gary K. Yeap
Cover of the book Knowledge Management for Development by Gary K. Yeap
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy