Principles of Artificial Neural Networks

Basic Designs to Deep Learning

Nonfiction, Computers, Advanced Computing, Engineering, Neural Networks, Artificial Intelligence, General Computing
Cover of the book Principles of Artificial Neural Networks by Daniel Graupe, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Daniel Graupe ISBN: 9789811201240
Publisher: World Scientific Publishing Company Publication: March 15, 2019
Imprint: WSPC Language: English
Author: Daniel Graupe
ISBN: 9789811201240
Publisher: World Scientific Publishing Company
Publication: March 15, 2019
Imprint: WSPC
Language: English

The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.

This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.

The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Contents:

  • Introduction and Role of Artificial Neural Networks
  • Fundamentals of Biological Neural Networks
  • Basic Principles of ANNs and Their Structures
  • The Perceptron
  • The Madaline
  • Back Propagation
  • Hopfield Networks
  • Counter Propagation
  • Adaptive Resonance Theory
  • The Cognitron and Neocognitron
  • Statistical Training
  • Recurrent (Time Cycling) Back Propagation Networks
  • Deep Learning Neural Networks: Principles and Scope
  • Deep Learning Convolutional Neural Networks
  • LAMSTAR Neural Networks
  • Performance of DLNN — Comparative Case Studies

Readership: Researchers, academics, professionals and senior undergraduate and graduate students in artificial intelligence, machine learning, neural networks and computer engineering.
0

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.

This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.

The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Contents:

Readership: Researchers, academics, professionals and senior undergraduate and graduate students in artificial intelligence, machine learning, neural networks and computer engineering.
0

More books from World Scientific Publishing Company

Cover of the book Where Medicine Went Wrong by Daniel Graupe
Cover of the book Top the IELTS by Daniel Graupe
Cover of the book A Quick Introduction to Complex Analysis by Daniel Graupe
Cover of the book Differential Evolution in Chemical Engineering by Daniel Graupe
Cover of the book Fractional Calculus by Daniel Graupe
Cover of the book Why Are You Always on the Phone? by Daniel Graupe
Cover of the book Beyond the Stars by Daniel Graupe
Cover of the book QuarkGluon Plasma 5 by Daniel Graupe
Cover of the book Random Matrices and Random Partitions by Daniel Graupe
Cover of the book Machinery, Materials Science and Energy Engineering (ICMMSEE 2015) by Daniel Graupe
Cover of the book Women at Imperial College by Daniel Graupe
Cover of the book Gallium Nitride and Silicon Carbide Power Devices by Daniel Graupe
Cover of the book Materials Engineering and Environmental Science by Daniel Graupe
Cover of the book Surgery: Problems and Solutions by Daniel Graupe
Cover of the book Mathematical Methods for Mechanical Sciences by Daniel Graupe
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy