Probability and Computing

Randomization and Probabilistic Techniques in Algorithms and Data Analysis

Nonfiction, Computers, General Computing, Programming
Cover of the book Probability and Computing by Michael Mitzenmacher, Eli Upfal, Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Michael Mitzenmacher, Eli Upfal ISBN: 9781108105958
Publisher: Cambridge University Press Publication: July 3, 2017
Imprint: Cambridge University Press Language: English
Author: Michael Mitzenmacher, Eli Upfal
ISBN: 9781108105958
Publisher: Cambridge University Press
Publication: July 3, 2017
Imprint: Cambridge University Press
Language: English

Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics.

More books from Cambridge University Press

Cover of the book The Relevant Market in International Economic Law by Michael Mitzenmacher, Eli Upfal
Cover of the book Time, Tense, and American Literature by Michael Mitzenmacher, Eli Upfal
Cover of the book The Slave Trade and Culture in the Bight of Biafra by Michael Mitzenmacher, Eli Upfal
Cover of the book Lexical Layers of Identity by Michael Mitzenmacher, Eli Upfal
Cover of the book The Ecology of War in China by Michael Mitzenmacher, Eli Upfal
Cover of the book The Presocratic Philosophers by Michael Mitzenmacher, Eli Upfal
Cover of the book Imaging Acute Neurologic Disease by Michael Mitzenmacher, Eli Upfal
Cover of the book A Walk through the Heavens by Michael Mitzenmacher, Eli Upfal
Cover of the book Emergency Radiology by Michael Mitzenmacher, Eli Upfal
Cover of the book Chinese Contract Law by Michael Mitzenmacher, Eli Upfal
Cover of the book Aspect-Oriented, Model-Driven Software Product Lines by Michael Mitzenmacher, Eli Upfal
Cover of the book Yoruba Art and Language by Michael Mitzenmacher, Eli Upfal
Cover of the book Promoting the Rule of Law in Post-Conflict States by Michael Mitzenmacher, Eli Upfal
Cover of the book Solidarity and Conflict by Michael Mitzenmacher, Eli Upfal
Cover of the book Interactional Linguistics by Michael Mitzenmacher, Eli Upfal
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy