Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics

Nonfiction, Science & Nature, Science, Other Sciences, Weights & Measures, Physics, Astronomy
Cover of the book Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics by Masato Shirasaki, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Masato Shirasaki ISBN: 9789812877963
Publisher: Springer Singapore Publication: November 18, 2015
Imprint: Springer Language: English
Author: Masato Shirasaki
ISBN: 9789812877963
Publisher: Springer Singapore
Publication: November 18, 2015
Imprint: Springer
Language: English

In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced.
For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees.
On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced.
For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees.
On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.

More books from Springer Singapore

Cover of the book Proceedings of Sixth International Conference on Soft Computing for Problem Solving by Masato Shirasaki
Cover of the book Topics in Biomedical Gerontology by Masato Shirasaki
Cover of the book Proceedings of the 3rd International Halal Conference (INHAC 2016) by Masato Shirasaki
Cover of the book Advances in Structural Integrity by Masato Shirasaki
Cover of the book Construction Productivity in the Multilayer Subcontracting System by Masato Shirasaki
Cover of the book Rural Urban Migration and Policy Intervention in China by Masato Shirasaki
Cover of the book Trade Liberalisation, Economic Growth and Environmental Externalities by Masato Shirasaki
Cover of the book Physics and Engineering of Metallic Materials by Masato Shirasaki
Cover of the book Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems by Masato Shirasaki
Cover of the book The Art of Engaging Unionised Employees by Masato Shirasaki
Cover of the book Early Study-Abroad and Identities by Masato Shirasaki
Cover of the book Human Herpesviruses by Masato Shirasaki
Cover of the book International Symposium for Intelligent Transportation and Smart City (ITASC) 2017 Proceedings by Masato Shirasaki
Cover of the book The Water-Energy-Food Nexus by Masato Shirasaki
Cover of the book Rubber Science by Masato Shirasaki
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy