Professional CUDA C Programming

Nonfiction, Computers, Programming, Parallel Programming
Cover of the book Professional CUDA C Programming by John Cheng, Max Grossman, Ty McKercher, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John Cheng, Max Grossman, Ty McKercher ISBN: 9781118739310
Publisher: Wiley Publication: September 8, 2014
Imprint: Wrox Language: English
Author: John Cheng, Max Grossman, Ty McKercher
ISBN: 9781118739310
Publisher: Wiley
Publication: September 8, 2014
Imprint: Wrox
Language: English

Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide

Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming.

Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including:

  • CUDA Programming Model
  • GPU Execution Model
  • GPU Memory model
  • Streams, Event and Concurrency
  • Multi-GPU Programming
  • CUDA Domain-Specific Libraries
  • Profiling and Performance Tuning

The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide

Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming.

Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including:

The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

More books from Wiley

Cover of the book Race and Work by John Cheng, Max Grossman, Ty McKercher
Cover of the book 3D Visual Communications by John Cheng, Max Grossman, Ty McKercher
Cover of the book Coding with JavaScript For Dummies by John Cheng, Max Grossman, Ty McKercher
Cover of the book Governing Global Land Deals by John Cheng, Max Grossman, Ty McKercher
Cover of the book Advanced Structural Damage Detection by John Cheng, Max Grossman, Ty McKercher
Cover of the book Ethnopharmacology by John Cheng, Max Grossman, Ty McKercher
Cover of the book Energy and Process Optimization for the Process Industries by John Cheng, Max Grossman, Ty McKercher
Cover of the book Mastering Autodesk Revit 2018 by John Cheng, Max Grossman, Ty McKercher
Cover of the book Personalmanagement im Controlling by John Cheng, Max Grossman, Ty McKercher
Cover of the book Electricity Markets by John Cheng, Max Grossman, Ty McKercher
Cover of the book Nano- and Microtechnology from A - Z by John Cheng, Max Grossman, Ty McKercher
Cover of the book Pinfluence by John Cheng, Max Grossman, Ty McKercher
Cover of the book East Asia's Reemergence by John Cheng, Max Grossman, Ty McKercher
Cover of the book Toxicology of Nanomaterials by John Cheng, Max Grossman, Ty McKercher
Cover of the book The Psycholinguistics of Bilingualism by John Cheng, Max Grossman, Ty McKercher
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy