Protein Hydrolysates in Biotechnology

Nonfiction, Science & Nature, Science, Biological Sciences, Biotechnology, Botany, Technology
Cover of the book Protein Hydrolysates in Biotechnology by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781402066740
Publisher: Springer Netherlands Publication: August 28, 2010
Imprint: Springer Language: English
Author:
ISBN: 9781402066740
Publisher: Springer Netherlands
Publication: August 28, 2010
Imprint: Springer
Language: English

Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term “peptone” was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term “peptone” was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.

More books from Springer Netherlands

Cover of the book Metamorphic Processes by
Cover of the book The Physician as Captain of the Ship by
Cover of the book Sustainable Development of European Cities and Regions by
Cover of the book Computational Intelligence Techniques in Earth and Environmental Sciences by
Cover of the book The Royal Dutch Theatre at the Hague 1804–1876 by
Cover of the book Modern Biotechnology in Postmodern Times? by
Cover of the book Defining an Identity by
Cover of the book Disposal of Dangerous Chemicals in Urban Areas and Mega Cities by
Cover of the book Aesthetics and the Embodied Mind: Beyond Art Theory and the Cartesian Mind-Body Dichotomy by
Cover of the book Continuum Mechanics Through the Twentieth Century by
Cover of the book The EuroQol Group after 25 years by
Cover of the book Multidimensional Ranking by
Cover of the book Technology, Transgenics and a Practical Moral Code by
Cover of the book Assessment of Mammalian Embryo Quality by
Cover of the book Thermodynamics for Chemists, Physicists and Engineers by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy