Author: | Sebastian Raschka, David Julian, John Hearty | ISBN: | 9781787128545 |
Publisher: | Packt Publishing | Publication: | August 31, 2016 |
Imprint: | Packt Publishing | Language: | English |
Author: | Sebastian Raschka, David Julian, John Hearty |
ISBN: | 9781787128545 |
Publisher: | Packt Publishing |
Publication: | August 31, 2016 |
Imprint: | Packt Publishing |
Language: | English |
Leverage benefits of machine learning techniques using Python
This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts.
Learn to write clean and elegant Python code that will optimize the strength of your algorithms
Uncover hidden patterns and structures in data with clustering
Improve accuracy and consistency of results using powerful feature engineering techniques
Gain practical and theoretical understanding of cutting-edge deep learning algorithms
Solve unique tasks by building models
Get grips on the machine learning design process
In Detail
Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project.
The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems.
The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems.
At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering.
Style and approach
This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.
Leverage benefits of machine learning techniques using Python
This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts.
Learn to write clean and elegant Python code that will optimize the strength of your algorithms
Uncover hidden patterns and structures in data with clustering
Improve accuracy and consistency of results using powerful feature engineering techniques
Gain practical and theoretical understanding of cutting-edge deep learning algorithms
Solve unique tasks by building models
Get grips on the machine learning design process
In Detail
Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project.
The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems.
The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems.
At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering.
Style and approach
This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.