Radionuclides in the Environment

Influence of chemical speciation and plant uptake on radionuclide migration

Nonfiction, Science & Nature, Technology, Environmental, Science, Biological Sciences, Environmental Science
Cover of the book Radionuclides in the Environment by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319221717
Publisher: Springer International Publishing Publication: October 30, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319221717
Publisher: Springer International Publishing
Publication: October 30, 2015
Imprint: Springer
Language: English

This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments.

A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre

am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments.

A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre

am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.

More books from Springer International Publishing

Cover of the book Machine Translation with Minimal Reliance on Parallel Resources by
Cover of the book Melanin-Concentrating Hormone and Sleep by
Cover of the book Statistical Methods for Data Analysis in Particle Physics by
Cover of the book Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials by
Cover of the book From Real to Complex Analysis by
Cover of the book Book of Extremes by
Cover of the book Oral Pathology in the Pediatric Patient by
Cover of the book Human Subjects Research after the Holocaust by
Cover of the book Software Developers as Users by
Cover of the book Applications of Evolutionary Computation in Image Processing and Pattern Recognition by
Cover of the book Environmental Management in Ski Areas by
Cover of the book The Twenty-First Century Commercial Space Imperative by
Cover of the book Metal Scrappers and Thieves by
Cover of the book The World’s Urban Forests by
Cover of the book Modelling with the Master Equation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy