Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Reactive Oxygen Species and Oxidative Damage in Plants Under Stress by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319204215
Publisher: Springer International Publishing Publication: September 7, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319204215
Publisher: Springer International Publishing
Publication: September 7, 2015
Imprint: Springer
Language: English

This book provides detailed and comprehensive information on oxidative damage caused by stresses in plants with especial reference to the metabolism of reactive oxygen species (ROS).

In plants, as in all aerobic organisms, ROS are common by-products formed by the inevitable leakage of electrons onto O2 from the electron transport activities located in chloroplasts, mitochondria, peroxisomes and in plasma membranes or as a consequence of various metabolic pathways confined in different cellular loci. Environmental stresses such as heat, cold, drought, salinity, heavy-metal toxicity, ozone and ultraviolet radiation as well as pathogens/contagion attack lead to enhanced generation of ROS in plants due to disruption of cellular homeostasis. ROS play a dual role in plants; at low concentrations they act as signaling molecules that facilitate several responses in plant cells, including those promoted by biotic and abiotic agents. In divergence, at high levels they cause damage to cellular constituents triggering oxidative stress. In either case, small antioxidant molecules and enzymes modulate the action of these ambivalent species.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides detailed and comprehensive information on oxidative damage caused by stresses in plants with especial reference to the metabolism of reactive oxygen species (ROS).

In plants, as in all aerobic organisms, ROS are common by-products formed by the inevitable leakage of electrons onto O2 from the electron transport activities located in chloroplasts, mitochondria, peroxisomes and in plasma membranes or as a consequence of various metabolic pathways confined in different cellular loci. Environmental stresses such as heat, cold, drought, salinity, heavy-metal toxicity, ozone and ultraviolet radiation as well as pathogens/contagion attack lead to enhanced generation of ROS in plants due to disruption of cellular homeostasis. ROS play a dual role in plants; at low concentrations they act as signaling molecules that facilitate several responses in plant cells, including those promoted by biotic and abiotic agents. In divergence, at high levels they cause damage to cellular constituents triggering oxidative stress. In either case, small antioxidant molecules and enzymes modulate the action of these ambivalent species.

More books from Springer International Publishing

Cover of the book Managing Improvement in Healthcare by
Cover of the book Reconstruction and Analysis of 3D Scenes by
Cover of the book Gender and Choice after Socialism by
Cover of the book Bodies and Media by
Cover of the book Institutional Diversity in Banking by
Cover of the book STAT Inhibitors in Cancer by
Cover of the book Women in Mathematics by
Cover of the book Targeting the Broadly Pathogenic Kynurenine Pathway by
Cover of the book Optimal Control of a Double Integrator by
Cover of the book Palaeobiology of Middle Paleozoic Marine Brachiopods by
Cover of the book Development and Planning in Seven Major Coastal Cities in Southern and Eastern China by
Cover of the book Applied Mechanics, Behavior of Materials, and Engineering Systems by
Cover of the book Multimedia Database Retrieval by
Cover of the book Intersections of Contemporary Art, Anthropology and Art History in South Asia by
Cover of the book Spectral Theory and Applications of Linear Operators and Block Operator Matrices by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy