Recommendation Systems in Software Engineering

Business & Finance, Industries & Professions, Information Management, Nonfiction, Computers, Programming, Software Development, General Computing
Cover of the book Recommendation Systems in Software Engineering by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642451355
Publisher: Springer Berlin Heidelberg Publication: April 30, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783642451355
Publisher: Springer Berlin Heidelberg
Publication: April 30, 2014
Imprint: Springer
Language: English

With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.

This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: “Part I – Techniques” introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow. “Part II – Evaluation” summarizes methods and experimental designs for evaluating recommendations in software engineering. “Part III – Applications” describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, focusing on the engineering insights required to make effective recommendations. The book is complemented by the webpage rsse.org/book, which includes free supplemental materials for readers of this book and anyone interested in recommendation systems in software engineering, including lecture slides, data sets, source code, and an overview of people, groups, papers and tools with regard to recommendation systems in software engineering.

The book is particularly well-suited for graduate students and researchers building new recommendation systems for software engineering applications or in other high-tech fields. It may also serve as the basis for graduate courses on recommendation systems, applied data mining or software engineering. Software engineering practitioners developing recommendation systems or similar applications with predictive functionality will also benefit from the broad spectrum of topics covered.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.

This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: “Part I – Techniques” introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow. “Part II – Evaluation” summarizes methods and experimental designs for evaluating recommendations in software engineering. “Part III – Applications” describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, focusing on the engineering insights required to make effective recommendations. The book is complemented by the webpage rsse.org/book, which includes free supplemental materials for readers of this book and anyone interested in recommendation systems in software engineering, including lecture slides, data sets, source code, and an overview of people, groups, papers and tools with regard to recommendation systems in software engineering.

The book is particularly well-suited for graduate students and researchers building new recommendation systems for software engineering applications or in other high-tech fields. It may also serve as the basis for graduate courses on recommendation systems, applied data mining or software engineering. Software engineering practitioners developing recommendation systems or similar applications with predictive functionality will also benefit from the broad spectrum of topics covered.

More books from Springer Berlin Heidelberg

Cover of the book States of Consciousness by
Cover of the book Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors by
Cover of the book Closed Functional Treatment of Fractures by
Cover of the book Computational Approaches to Analogical Reasoning: Current Trends by
Cover of the book Web Information Retrieval by
Cover of the book Moderne mathematische Methoden der Physik by
Cover of the book Understanding Network Hacks by
Cover of the book Laser Techniques for the Study of Electrode Processes by
Cover of the book The Venous Drainage of the Human Myocardium by
Cover of the book BOINC by
Cover of the book Chaos Detection and Predictability by
Cover of the book Mass Spectrometry in Anaesthesiology by
Cover of the book Measurement, Monitoring, Modelling and Control of Bioprocesses by
Cover of the book Reaction Patterns of the Lymph Node by
Cover of the book Cryptorchidism by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy