Salt Stress in Plants

Signalling, Omics and Adaptations

Nonfiction, Science & Nature, Science, Biological Sciences, Botany
Cover of the book Salt Stress in Plants by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461461081
Publisher: Springer New York Publication: February 26, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781461461081
Publisher: Springer New York
Publication: February 26, 2013
Imprint: Springer
Language: English

Environmental conditions and changes, irrespective of source, cause a variety of stresses, one of the most prevalent of which is salt stress. Excess amount of salt in the soil adversely affects plant growth and development, and impairs production. Nearly 20% of the world’s cultivated area and nearly half of the world’s irrigated lands are affected by salinity. Processes such as seed germination, seedling growth and vigour, vegetative growth, flowering and fruit set are adversely affected by high salt concentration, ultimately causing diminished economic yield and also quality of produce. Most plants cannot tolerate salt-stress. High salt concentrations decrease the osmotic potential of soil solution, creating a water stress in plants and severe ion toxicity. The interactions of salts with mineral nutrition may result in nutrient imbalances and deficiencies. The consequence of all these can ultimately lead to plant death as a result of growth arrest and molecular damage. To achieve salt-tolerance, the foremost task is either to prevent or alleviate the damage, or to re-establish homeostatic conditions in the new stressful environment. Barring a few exceptions, the conventional breeding techniques have been unsuccessful in transferring the salt-tolerance trait to the target species. A host of genes encoding different structural and regulatory proteins have been used over the past 5–6 years for the development of a range of abiotic stress-tolerant plants. It has been shown that using regulatory genes is a more effective approach for developing stress-tolerant plants. Thus, understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. The book will cover around 25 chapters with contributors from all over the world. ​​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Environmental conditions and changes, irrespective of source, cause a variety of stresses, one of the most prevalent of which is salt stress. Excess amount of salt in the soil adversely affects plant growth and development, and impairs production. Nearly 20% of the world’s cultivated area and nearly half of the world’s irrigated lands are affected by salinity. Processes such as seed germination, seedling growth and vigour, vegetative growth, flowering and fruit set are adversely affected by high salt concentration, ultimately causing diminished economic yield and also quality of produce. Most plants cannot tolerate salt-stress. High salt concentrations decrease the osmotic potential of soil solution, creating a water stress in plants and severe ion toxicity. The interactions of salts with mineral nutrition may result in nutrient imbalances and deficiencies. The consequence of all these can ultimately lead to plant death as a result of growth arrest and molecular damage. To achieve salt-tolerance, the foremost task is either to prevent or alleviate the damage, or to re-establish homeostatic conditions in the new stressful environment. Barring a few exceptions, the conventional breeding techniques have been unsuccessful in transferring the salt-tolerance trait to the target species. A host of genes encoding different structural and regulatory proteins have been used over the past 5–6 years for the development of a range of abiotic stress-tolerant plants. It has been shown that using regulatory genes is a more effective approach for developing stress-tolerant plants. Thus, understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. The book will cover around 25 chapters with contributors from all over the world. ​​

More books from Springer New York

Cover of the book Handbook of Adolescent Health Psychology by
Cover of the book Quality of the Body Cell Mass by
Cover of the book Factors Affecting the Removal of Ammonia from Air on Carbonaceous Materials by
Cover of the book Cognitive Radio Mobile Ad Hoc Networks by
Cover of the book Mechanical Self-Assembly by
Cover of the book VLSI Design by
Cover of the book Sleep and Combat-Related Post Traumatic Stress Disorder by
Cover of the book Poverty and Exclusion in the Western Balkans by
Cover of the book Jatropha, Challenges for a New Energy Crop by
Cover of the book Strategies in Regenerative Medicine by
Cover of the book Gastroesophageal Reflux and the Lung by
Cover of the book Glutamine in Clinical Nutrition by
Cover of the book BOLD fMRI by
Cover of the book Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems by
Cover of the book Contesting Ethnoarchaeologies by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy