Shear Deformable Beams and Plates

Relationships with Classical Solutions

Nonfiction, Science & Nature, Science, Physics, Quantum Theory, Technology
Cover of the book Shear Deformable Beams and Plates by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080541150
Publisher: Elsevier Science Publication: July 19, 2000
Imprint: Elsevier Science Language: English
Author:
ISBN: 9780080541150
Publisher: Elsevier Science
Publication: July 19, 2000
Imprint: Elsevier Science
Language: English

Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the classical theory.
Equations governing shear deformation theories are typically more complicated than those of the classical theory. Hence it is desirable to have exact relationships between solutions of the classical theory and shear deformation theories so that whenever classical theory solutions are available, the corresponding solutions of shear deformation theories can be readily obtained. Such relationships not only furnish benchmark solutions of shear deformation theories but also provide insight into the significance of shear deformation on the response. The relationships for beams and plates have been developed by many authors over the last several years. The goal of this monograph is to bring together these relationships for beams and plates in a single volume.
The book is divided into two parts. Following the introduction, Part 1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of Chapters 6 to 13 covering plates. Problems are included at the end of each chapter to use, extend, and develop new relationships.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the classical theory.
Equations governing shear deformation theories are typically more complicated than those of the classical theory. Hence it is desirable to have exact relationships between solutions of the classical theory and shear deformation theories so that whenever classical theory solutions are available, the corresponding solutions of shear deformation theories can be readily obtained. Such relationships not only furnish benchmark solutions of shear deformation theories but also provide insight into the significance of shear deformation on the response. The relationships for beams and plates have been developed by many authors over the last several years. The goal of this monograph is to bring together these relationships for beams and plates in a single volume.
The book is divided into two parts. Following the introduction, Part 1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of Chapters 6 to 13 covering plates. Problems are included at the end of each chapter to use, extend, and develop new relationships.

More books from Elsevier Science

Cover of the book Eleventh Hour Security+ by
Cover of the book Brugada Phenocopy by
Cover of the book Windows Forensic Analysis Toolkit by
Cover of the book Laboratory Methods in Enzymology: Protein Part C by
Cover of the book Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites by
Cover of the book Environmental and Animal Rights Extremism, Terrorism, and National Security by
Cover of the book Writing for Science and Engineering by
Cover of the book Orthopaedic Bone Cements by
Cover of the book Digital Information Strategies by
Cover of the book Non-Aqueous Solvents in Inorganic Chemistry by
Cover of the book Advances in Heterocyclic Chemistry by
Cover of the book External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid by
Cover of the book Resource Recovery and Recycling from Metallurgical Wastes by
Cover of the book Gene Transfer Vectors for Clinical Application by
Cover of the book Managing Image Collections by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy