Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53

Nonfiction, Science & Nature, Science, Physics, Astronomy, Other Sciences, History
Cover of the book Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465875648
Publisher: Progressive Management Publication: January 9, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465875648
Publisher: Progressive Management
Publication: January 9, 2012
Imprint: Smashwords Edition
Language: English

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

More books from Progressive Management

Cover of the book 21st Century FEMA Study Course: Exercise Design (IS-139) - Drills, Functional Exercises, Table Top and Full-scale Exercises, Emergency and Disaster Scenario by Progressive Management
Cover of the book Why the Weak Win Wars: A Study of the Factors That Drive Strategy in Asymmetric Conflict - Analysis of U.S. Involvement in Afghanistan, Iraq War, Soviet Occupation of Afghanistan, Vietnam War by Progressive Management
Cover of the book 2011 Complete Guide to the Federal Debt Limit and Deficit Reduction Plans: Impacts of Debt Limit, Moment of Truth National Commission Plan, Ryan Republican Plan, Obama Deficit Speech by Progressive Management
Cover of the book FBI Hate Crime Data Collection Guidelines and Training Manual: Criteria and Definitions, Scenarios of Bias Motivation, Race, Religion, Ethnicity, Sexual Orientation, Disability, Gender by Progressive Management
Cover of the book Geopolitics and Planning for a High-End Fight: NATO and the Baltic Region, Airpower and Geopolitical Angst, The New Russian Threat, Considering a High-End Fight with Russia, Putin by Progressive Management
Cover of the book 1963 JFK Assassination: Final Report of the Assassination Records Review Board - President John F. Kennedy, The JFK Act, Investigations, FBI and CIA, Zapruder Film, Medical and Ballistics, Critics by Progressive Management
Cover of the book U.S. Army Civil Affairs Forces in the Sahel: Developing an Approach to Building Relevant Partner Capacity in Support of U.S. Africa Command - Examples of Boko Haram in Nigeria, Mali Military Coup by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Air Force E-4 Nightwatch Command Post Aircraft - Operations Procedures, Aircrew Evaluation Criteria, Aircrew Training Flying Operations by Progressive Management
Cover of the book Contested Ground: The Historical Debate Over NASA's Mission - From Sputnik to the Apollo Moon Landing, Space Shuttle and Space Station Decisions, Commercial Space by Progressive Management
Cover of the book India and Pakistan Civil: Military Relations – Review of Military Coup Potential, Khan Deposing Mirza, Bhutto Replacing Khan, Zia-ul-Haq Deposing Bhutto, Sino-Indian War, Gandhi Declaring Emergency by Progressive Management
Cover of the book Tactical Nuclear Weapons and NATO - From Nuclear Artillery to Ballistic Missiles, TNWs and NSNWs, Nuclear Modernization, Deterrence, Operation Snowcat, Nuclear Zero, TLE (Treaty-limited Equipment) by Progressive Management
Cover of the book Blacks in the Army Air Forces During World War II: The Problems of Race Relations - Officers and Flying Units, Era of Change 1943, Protests and Leadership, Confrontation at Freeman Field by Progressive Management
Cover of the book The USAF in the Persian Gulf War: Airpower Advantage - Planning the Gulf War Air Campaign 1989-1991, Desert Storm, Schwarzkopf, Colin Powell, Saddam Hussein, Iraq Republican Guard, General Horner by Progressive Management
Cover of the book 21st Century FEMA Study Course: The Professional in Emergency Management (IS-513) - FEMA Organization and History, Disaster Assistance, Mitigation, Exercises, USFA by Progressive Management
Cover of the book Spiritual Dormancy: the Strategic Effect of the Depravation of God - Army Chaplains, Philosophical, Theological and Religious Underpinnings, Spiritual Conflict, Keeping Religion in the Military by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy