Author: | ISBN: | 9783662466575 | |
Publisher: | Springer Berlin Heidelberg | Publication: | December 5, 2016 |
Imprint: | Springer | Language: | English |
Author: | |
ISBN: | 9783662466575 |
Publisher: | Springer Berlin Heidelberg |
Publication: | December 5, 2016 |
Imprint: | Springer |
Language: | English |
This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry.
Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.
This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry.
Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.