State-Space Models

Applications in Economics and Finance

Business & Finance, Economics, Statistics, Nonfiction, Science & Nature, Mathematics
Cover of the book State-Space Models by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461477891
Publisher: Springer New York Publication: August 15, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781461477891
Publisher: Springer New York
Publication: August 15, 2013
Imprint: Springer
Language: English

State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data.  The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data.  The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.

More books from Springer New York

Cover of the book Gamete and Embryo Selection by
Cover of the book Frozen Section Library: Lung by
Cover of the book Industrial Crops by
Cover of the book Contraception for Adolescent and Young Adult Women by
Cover of the book Images and Power by
Cover of the book An Anthropology of Absence by
Cover of the book Free Probability and Random Matrices by
Cover of the book Variceal Hemorrhage by
Cover of the book USDA Forest Service Experimental Forests and Ranges by
Cover of the book Querying Moving Objects Detected by Sensor Networks by
Cover of the book 3D Integration for NoC-based SoC Architectures by
Cover of the book Percutaneous Venous Blood Sampling in Endocrine Diseases by
Cover of the book Statistical Analysis of Network Data with R by
Cover of the book Problem Gambling in Europe by
Cover of the book Celiac Disease by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy