Statistical Analysis for High-Dimensional Data

The Abel Symposium 2014

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Statistics
Cover of the book Statistical Analysis for High-Dimensional Data by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319270999
Publisher: Springer International Publishing Publication: February 16, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319270999
Publisher: Springer International Publishing
Publication: February 16, 2016
Imprint: Springer
Language: English

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

More books from Springer International Publishing

Cover of the book Large Deviations and Asymptotic Methods in Finance by
Cover of the book Sample Size Determination in Clinical Trials with Multiple Endpoints by
Cover of the book Plant Biomechanics by
Cover of the book Murray Gell-Mann and the Physics of Quarks by
Cover of the book Examination of Textiles with Mathematical and Physical Methods by
Cover of the book Finite Difference Methods,Theory and Applications by
Cover of the book Gendering Drugs by
Cover of the book Personalized Medicine by
Cover of the book Other Globes by
Cover of the book Ecocritical Perspectives on Children's Texts and Cultures by
Cover of the book Cycles in the UK Housing Economy by
Cover of the book Theorising Childhood by
Cover of the book Mobile Computing, Applications, and Services by
Cover of the book Cyber Threat Intelligence by
Cover of the book Kuhn’s Structure of Scientific Revolutions - 50 Years On by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy