Statistical Causal Inferences and Their Applications in Public Health Research

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Science, Biological Sciences
Cover of the book Statistical Causal Inferences and Their Applications in Public Health Research by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319412597
Publisher: Springer International Publishing Publication: October 26, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319412597
Publisher: Springer International Publishing
Publication: October 26, 2016
Imprint: Springer
Language: English

This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in statistics, biostatistics, and computational biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in statistics, biostatistics, and computational biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference. 

More books from Springer International Publishing

Cover of the book Gay Mental Healthcare Providers and Patients in the Military by
Cover of the book Advanced Information Systems Engineering Workshops by
Cover of the book Fractures of the Tibia by
Cover of the book Practical Aspects of Declarative Languages by
Cover of the book Anorectal Disease by
Cover of the book Human Action Recognition with Depth Cameras by
Cover of the book Molecular Markers in Mycology by
Cover of the book Wireless Mobility in Organizations by
Cover of the book Risks and Security of Internet and Systems by
Cover of the book Analogue Gravity Phenomenology by
Cover of the book Computational Vision and Bio Inspired Computing by
Cover of the book Fast Design, Slow Innovation by
Cover of the book The Consequences of Mobility by
Cover of the book World Englishes in English Language Teaching by
Cover of the book Optical Switching in Next Generation Data Centers by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy