Statistical Postprocessing of Ensemble Forecasts

Nonfiction, Science & Nature, Science, Other Sciences, Meteorology, Biological Sciences, Environmental Science
Cover of the book Statistical Postprocessing of Ensemble Forecasts by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128122488
Publisher: Elsevier Science Publication: May 17, 2018
Imprint: Elsevier Language: English
Author:
ISBN: 9780128122488
Publisher: Elsevier Science
Publication: May 17, 2018
Imprint: Elsevier
Language: English

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting.

After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book.

Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture.

  • Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place
  • Provides real-world examples of methods used to formulate forecasts
  • Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting.

After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book.

Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture.

More books from Elsevier Science

Cover of the book Matlab® in Quality Assurance Sciences by
Cover of the book On Growth, Form and Computers by
Cover of the book Adsorption of Gases on Heterogeneous Surfaces by
Cover of the book Chemical Kinetics: Fundamentals and Recent Developments by
Cover of the book High-Speed Analog-to-Digital Conversion by
Cover of the book Lightweight Composite Structures in Transport by
Cover of the book Biomaterials for Artificial Organs by
Cover of the book Meyler's Side Effects of Analgesics and Anti-inflammatory Drugs by
Cover of the book Sensory and Instrumental Evaluation of Alcoholic Beverages by
Cover of the book Genetic Improvement of Vegetable Crops by
Cover of the book The Multi-Dimensions of Industrial Relations in the Asian Knowledge-Based Economies by
Cover of the book Children Learn by Observing and Contributing to Family and Community Endeavors: A Cultural Paradigm by
Cover of the book Brain-Based Learning and Education by
Cover of the book Essential Oils in Food Preservation, Flavor and Safety by
Cover of the book Social Ecology in the Digital Age by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy