Statistics and Scaling in Turbulent Rayleigh-Bénard Convection

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Technology, Engineering, Mechanical
Cover of the book Statistics and Scaling in Turbulent Rayleigh-Bénard Convection by Emily S.C. Ching, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emily S.C. Ching ISBN: 9789814560238
Publisher: Springer Singapore Publication: August 13, 2013
Imprint: Springer Language: English
Author: Emily S.C. Ching
ISBN: 9789814560238
Publisher: Springer Singapore
Publication: August 13, 2013
Imprint: Springer
Language: English

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

More books from Springer Singapore

Cover of the book Low Carbon Energy Supply by Emily S.C. Ching
Cover of the book The Student Supercomputer Challenge Guide by Emily S.C. Ching
Cover of the book Taiwan Cinema, Memory, and Modernity by Emily S.C. Ching
Cover of the book Impact of Climate Change on Water Resources by Emily S.C. Ching
Cover of the book Self-determinable Development of Small Islands by Emily S.C. Ching
Cover of the book Education in an Era of Schooling by Emily S.C. Ching
Cover of the book Family, Work and Wellbeing in Asia by Emily S.C. Ching
Cover of the book Nano/Micro-Structured Materials for Energy and Biomedical Applications by Emily S.C. Ching
Cover of the book Sustainable Luxury by Emily S.C. Ching
Cover of the book Transformations of Social-Ecological Systems by Emily S.C. Ching
Cover of the book Ravine Lands: Greening for Livelihood and Environmental Security by Emily S.C. Ching
Cover of the book Experimental and Numerical Study of Glass Façade Breakage Behavior under Fire Conditions by Emily S.C. Ching
Cover of the book Issues on Health and Healthcare in India by Emily S.C. Ching
Cover of the book Writing with Deleuze in the Academy by Emily S.C. Ching
Cover of the book Archaeology, Cultural Heritage Protection and Community Engagement in South Asia by Emily S.C. Ching
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy