Stochastic Flood Forecasting System

The Middle River Vistula Case Study

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics
Cover of the book Stochastic Flood Forecasting System by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319188546
Publisher: Springer International Publishing Publication: June 29, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319188546
Publisher: Springer International Publishing
Publication: June 29, 2015
Imprint: Springer
Language: English

This book presents the novel formulation and development of a Stochastic Flood Forecasting System, using the Middle River Vistula basin in Poland as a case study. The system has a modular structure, including models describing the rainfall-runoff and snow-melt processes for tributary catchments and the transformation of a flood wave within the reach. The sensitivity and uncertainty analysis of the elements of the study system are performed at both the calibration and verification stages. The spatial and temporal variability of catchment land use and river flow regime based on analytical studies and measurements is presented. A lumped parameter approximation to the distributed modelling of river flow is developed for the purpose of flow forecasting. Control System based emulators (Hammerstein-Wiener models) are applied to on-line data assimilation. Medium-range probabilistic weather forecasts (ECMWF) and on-line observations of temperature, precipitation and water levels are used to prolong the forecast lead time. The potential end-users will also benefit from a description of social vulnerability to natural hazards in the study area.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents the novel formulation and development of a Stochastic Flood Forecasting System, using the Middle River Vistula basin in Poland as a case study. The system has a modular structure, including models describing the rainfall-runoff and snow-melt processes for tributary catchments and the transformation of a flood wave within the reach. The sensitivity and uncertainty analysis of the elements of the study system are performed at both the calibration and verification stages. The spatial and temporal variability of catchment land use and river flow regime based on analytical studies and measurements is presented. A lumped parameter approximation to the distributed modelling of river flow is developed for the purpose of flow forecasting. Control System based emulators (Hammerstein-Wiener models) are applied to on-line data assimilation. Medium-range probabilistic weather forecasts (ECMWF) and on-line observations of temperature, precipitation and water levels are used to prolong the forecast lead time. The potential end-users will also benefit from a description of social vulnerability to natural hazards in the study area.

More books from Springer International Publishing

Cover of the book Intimacies of Violence in the Settler Colony by
Cover of the book Social Wellbeing and the Values of Small-scale Fisheries by
Cover of the book Communities of Practice and Vintage Innovation by
Cover of the book MRI of Degenerative Disease of the Spine by
Cover of the book Web and Big Data by
Cover of the book The Uncertain Future of American Public Higher Education by
Cover of the book Worldwide Language Service Infrastructure by
Cover of the book Fractional-order Modeling and Control of Dynamic Systems by
Cover of the book The Sedated Society by
Cover of the book Robotics Research by
Cover of the book Nonlinear Stochastic Systems with Network-Induced Phenomena by
Cover of the book Quantum Walks and Search Algorithms by
Cover of the book Multi-shell Polyhedral Clusters by
Cover of the book Adipocytokines, Energy Balance, and Cancer by
Cover of the book Computers Helping People with Special Needs by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy