Submarine Landslides and Tsunamis

Nonfiction, Science & Nature, Technology, Engineering, Mechanical, Science, Earth Sciences
Cover of the book Submarine Landslides and Tsunamis by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401002059
Publisher: Springer Netherlands Publication: December 6, 2012
Imprint: Springer Language: English
Author:
ISBN: 9789401002059
Publisher: Springer Netherlands
Publication: December 6, 2012
Imprint: Springer
Language: English

Tsunamis are water waves triggered by impulsive geologic events such as sea floor deformation, landslides, slumps, subsidence, volcanic eruptions and bolide impacts. Tsunamis can inflict significant damage and casualties both nearfield and after evolving over long propagation distances and impacting distant coastlines. Tsunamis can also effect geomorphologic changes along the coast. Understanding tsunami generation and evolution is of paramount importance for protecting coastal population at risk, coastal structures and the natural environment. Accurately and reliably predicting the initial waveform and the associated coastal effects of tsunamis remains one of the most vexing problems in geophysics, and -with few exceptions- has resisted routine numerical computation or data collection solutions. While ten years ago, it was believed that the generation problem was adequately understood for useful predictions, it is now clear that it is not, especially nearfield. By contrast, the runup problem earlier believed intractable is now well understood for all but the most extreme breaking wave events.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Tsunamis are water waves triggered by impulsive geologic events such as sea floor deformation, landslides, slumps, subsidence, volcanic eruptions and bolide impacts. Tsunamis can inflict significant damage and casualties both nearfield and after evolving over long propagation distances and impacting distant coastlines. Tsunamis can also effect geomorphologic changes along the coast. Understanding tsunami generation and evolution is of paramount importance for protecting coastal population at risk, coastal structures and the natural environment. Accurately and reliably predicting the initial waveform and the associated coastal effects of tsunamis remains one of the most vexing problems in geophysics, and -with few exceptions- has resisted routine numerical computation or data collection solutions. While ten years ago, it was believed that the generation problem was adequately understood for useful predictions, it is now clear that it is not, especially nearfield. By contrast, the runup problem earlier believed intractable is now well understood for all but the most extreme breaking wave events.

More books from Springer Netherlands

Cover of the book High Pressure Bioscience by
Cover of the book Ceterus Paribus Laws by
Cover of the book Belief Revision meets Philosophy of Science by
Cover of the book Modality in Argumentation by
Cover of the book Unified Science by
Cover of the book Modern trends in Superconductivity and Superfluidity by
Cover of the book Groundwater Management in the East of the European Union by
Cover of the book Butterfly Conservation in North America by
Cover of the book Arguments, Stories and Criminal Evidence by
Cover of the book Drugs and the Liver: High Risk Patients and Transplantation by
Cover of the book The Convergence of the Fundamental Rights Protection in Europe by
Cover of the book Technosophy: Strategic Approaches to the Assessment and Management of Manufacturing Technology Innovation by
Cover of the book Drilling Engineering Handbook by
Cover of the book Isoenzymes by
Cover of the book Civil Disobedience in Global Perspective by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy