Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases

Nonfiction, Health & Well Being, Medical, Reference, Research
Cover of the book Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319124155
Publisher: Springer International Publishing Publication: February 23, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319124155
Publisher: Springer International Publishing
Publication: February 23, 2015
Imprint: Springer
Language: English

MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key player. However, dioxygen can also be produced in the dark, by heme iron-dependent dismutation of oxyanions. Metalloenzymes Mastering Dioxygen and Other Chewy Gasesis a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry, and environmental biochemistry. All this is covered in an authoritative manner in 7 stimulating chapters, written by 21 internationally recognized experts, and supported by nearly 1100 references, informative tables, and over 140 illustrations (many in color). MILS-15 provides excellent information for teaching; it is also closely related to MILS-14, The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment.

Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper, and molybdenum enzymes and their impact on the biogeochemical cyles of nitrogen and sulfur.

Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical, and spectroscopic techniques.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key player. However, dioxygen can also be produced in the dark, by heme iron-dependent dismutation of oxyanions. Metalloenzymes Mastering Dioxygen and Other Chewy Gasesis a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry, and environmental biochemistry. All this is covered in an authoritative manner in 7 stimulating chapters, written by 21 internationally recognized experts, and supported by nearly 1100 references, informative tables, and over 140 illustrations (many in color). MILS-15 provides excellent information for teaching; it is also closely related to MILS-14, The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment.

Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper, and molybdenum enzymes and their impact on the biogeochemical cyles of nitrogen and sulfur.

Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical, and spectroscopic techniques.

More books from Springer International Publishing

Cover of the book Cancer of the Oral Cavity, Pharynx and Larynx by
Cover of the book Augmented Reality, Virtual Reality, and Computer Graphics by
Cover of the book Philosophical Explorations of the Legacy of Alan Turing by
Cover of the book Raw Materials Substitution Sustainability by
Cover of the book Spanish Philosophy of Technology by
Cover of the book User-Centric Ultra-Dense Networks for 5G by
Cover of the book Risk Measurement by
Cover of the book Integrative Production Technology by
Cover of the book Dynamic Buckling of Columns Inside Oil Wells by
Cover of the book Technology Enhanced Assessment by
Cover of the book Modelling Foundations and Applications by
Cover of the book When Trucks Stop Running by
Cover of the book Conveyor Belt Furnace Thermal Processing by
Cover of the book Contemporary Philosophical Proposals for the University by
Cover of the book Fighting Fraud and Corruption at the World Bank by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy