The Design and Analysis of Computer Experiments

Nonfiction, Science & Nature, Mathematics, Applied, Statistics
Cover of the book The Design and Analysis of Computer Experiments by Thomas J.  Santner, Brian J. Williams, William I.  Notz, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Thomas J. Santner, Brian J. Williams, William I. Notz ISBN: 9781493988471
Publisher: Springer New York Publication: January 8, 2019
Imprint: Springer Language: English
Author: Thomas J. Santner, Brian J. Williams, William I. Notz
ISBN: 9781493988471
Publisher: Springer New York
Publication: January 8, 2019
Imprint: Springer
Language: English

This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for andadjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers.

 

New to this revised and expanded edition:

• An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples     

• A new comparison of plug-in prediction methodologies for real-valued simulator output

• An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions

• A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization

• A new chapter describing graphical and numerical sensitivity analysis tools

• Substantial new material on calibration-based prediction and inference for calibration parameters

•  Lists of software that can be used to fit models discussed in the book to aid practitioners 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for andadjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers.

 

New to this revised and expanded edition:

• An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples     

• A new comparison of plug-in prediction methodologies for real-valued simulator output

• An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions

• A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization

• A new chapter describing graphical and numerical sensitivity analysis tools

• Substantial new material on calibration-based prediction and inference for calibration parameters

•  Lists of software that can be used to fit models discussed in the book to aid practitioners 

More books from Springer New York

Cover of the book Experimental Hematology Today 1979 by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Handbook of Gender Research in Psychology by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Hidden Harmony—Geometric Fantasies by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Upper Tract Urothelial Carcinoma by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Liberating Energy from Carbon: Introduction to Decarbonization by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Vascular Tumors and Developmental Malformations by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Pharmaceutical Biotechnology by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Office Gynecology by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Genetics Meets Metabolomics by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Introduction to Vortex Filaments in Equilibrium by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Reviews of Environmental Contamination and Toxicology by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Clinical Guide to Mental Disability Evaluations by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Renal Cell Carcinoma by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Representation Theory of Finite Groups by Thomas J.  Santner, Brian J. Williams, William I.  Notz
Cover of the book Facebook Nation by Thomas J.  Santner, Brian J. Williams, William I.  Notz
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy