The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

Delayed Hydride Cracking

Nonfiction, Science & Nature, Science, Chemistry, Technical & Industrial, Physics, Mechanics, Technology
Cover of the book The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components by Manfred P. Puls, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Manfred P. Puls ISBN: 9781447141952
Publisher: Springer London Publication: August 4, 2012
Imprint: Springer Language: English
Author: Manfred P. Puls
ISBN: 9781447141952
Publisher: Springer London
Publication: August 4, 2012
Imprint: Springer
Language: English

By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the emphasis lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.

 

This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors.  Emphasis is placed on showing how our understanding of DHC is supported by progress in general understanding of such broad fields as the study of hysteresis associated with first order phase transformations, phase relationships in coherent crystalline metallic solids, the physics of point and line defects, diffusion of substitutional and interstitial atoms in crystalline solids, and continuum fracture and solid mechanics. Furthermore, an account of current methodologies is given illustrating how such understanding of hydrogen, hydrides and DHC in zirconium alloys underpins these methodologies for assessments of real life cases in the Canadian nuclear industry.

 

The all-encompassing approach makes The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Component: Delayed Hydride Cracking an ideal reference source for students, researchers and industry professionals alike.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the emphasis lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.

 

This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors.  Emphasis is placed on showing how our understanding of DHC is supported by progress in general understanding of such broad fields as the study of hysteresis associated with first order phase transformations, phase relationships in coherent crystalline metallic solids, the physics of point and line defects, diffusion of substitutional and interstitial atoms in crystalline solids, and continuum fracture and solid mechanics. Furthermore, an account of current methodologies is given illustrating how such understanding of hydrogen, hydrides and DHC in zirconium alloys underpins these methodologies for assessments of real life cases in the Canadian nuclear industry.

 

The all-encompassing approach makes The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Component: Delayed Hydride Cracking an ideal reference source for students, researchers and industry professionals alike.

More books from Springer London

Cover of the book Clinical Trials in Osteoporosis by Manfred P. Puls
Cover of the book Combination Therapy in Urological Malignancy by Manfred P. Puls
Cover of the book Dependability of Networked Computer-based Systems by Manfred P. Puls
Cover of the book Cancer Chemotherapy: an Introduction by Manfred P. Puls
Cover of the book Epidemiology of Peripheral Vascular Disease by Manfred P. Puls
Cover of the book Dermatology by Manfred P. Puls
Cover of the book Transformation Electromagnetics and Metamaterials by Manfred P. Puls
Cover of the book Therapeutic Antibodies by Manfred P. Puls
Cover of the book Energy by Manfred P. Puls
Cover of the book Hazards and Errors in Anaesthesia by Manfred P. Puls
Cover of the book Crohn’s Disease and Ulcerative Colitis by Manfred P. Puls
Cover of the book Design for Environment as a Tool for the Development of a Sustainable Supply Chain by Manfred P. Puls
Cover of the book Neurocritical Care by Manfred P. Puls
Cover of the book Implant Bone Interface by Manfred P. Puls
Cover of the book The Pharmacology of the Urinary Tract by Manfred P. Puls
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy