The gm/ID Methodology, a sizing tool for low-voltage analog CMOS Circuits

The semi-empirical and compact model approaches

Nonfiction, Science & Nature, Technology, Electronics, Circuits
Cover of the book The gm/ID Methodology, a sizing tool for low-voltage analog CMOS Circuits by Paul Jespers, Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Paul Jespers ISBN: 9780387471013
Publisher: Springer US Publication: December 1, 2009
Imprint: Springer Language: English
Author: Paul Jespers
ISBN: 9780387471013
Publisher: Springer US
Publication: December 1, 2009
Imprint: Springer
Language: English

IC designers appraise currently MOS transistor geometries and currents to compromise objectives like gain-bandwidth, slew-rate, dynamic range, noise, non-linear distortion, etc. Making optimal choices is a difficult task. How to minimize for instance the power consumption of an operational amplifier without too much penalty regarding area while keeping the gain-bandwidth unaffected in the same time? Moderate inversion yields high gains, but the concomitant area increase adds parasitics that restrict bandwidth. Which methodology to use in order to come across the best compromise(s)? Is synthesis a mixture of design experience combined with cut and tries or is it a constrained multivariate optimization problem, or a mixture? Optimization algorithms are attractive from a system perspective of course, but what about low-voltage low-power circuits, requiring a more physical approach? The connections amid transistor physics and circuits are intricate and their interactions not always easy to describe in terms of existing software packages.

The gm/ID synthesis methodology is adapted to CMOS analog circuits for the transconductance over drain current ratio combines most of the ingredients needed in order to determine transistors sizes and DC currents.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

IC designers appraise currently MOS transistor geometries and currents to compromise objectives like gain-bandwidth, slew-rate, dynamic range, noise, non-linear distortion, etc. Making optimal choices is a difficult task. How to minimize for instance the power consumption of an operational amplifier without too much penalty regarding area while keeping the gain-bandwidth unaffected in the same time? Moderate inversion yields high gains, but the concomitant area increase adds parasitics that restrict bandwidth. Which methodology to use in order to come across the best compromise(s)? Is synthesis a mixture of design experience combined with cut and tries or is it a constrained multivariate optimization problem, or a mixture? Optimization algorithms are attractive from a system perspective of course, but what about low-voltage low-power circuits, requiring a more physical approach? The connections amid transistor physics and circuits are intricate and their interactions not always easy to describe in terms of existing software packages.

The gm/ID synthesis methodology is adapted to CMOS analog circuits for the transconductance over drain current ratio combines most of the ingredients needed in order to determine transistors sizes and DC currents.

More books from Springer US

Cover of the book An Archaeology of History and Tradition by Paul Jespers
Cover of the book The Neutrophil by Paul Jespers
Cover of the book Managing Managed Care by Paul Jespers
Cover of the book Molecular Targeting and Signal Transduction by Paul Jespers
Cover of the book Psychological Aspects of Cancer by Paul Jespers
Cover of the book Vacuum Microbalance Techniques by Paul Jespers
Cover of the book Programmed Cell Death by Paul Jespers
Cover of the book The Exploitation of Plant Resources in Ancient Africa by Paul Jespers
Cover of the book Biology of Depressive Disorders. Part A by Paul Jespers
Cover of the book Cardiovascular Reactivity and Stress by Paul Jespers
Cover of the book Adherence to Pediatric Medical Regimens by Paul Jespers
Cover of the book The Printing Ink Manual by Paul Jespers
Cover of the book Microstrip Patch Antennas: A Designer’s Guide by Paul Jespers
Cover of the book Stereolithography by Paul Jespers
Cover of the book Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis by Paul Jespers
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy