The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems

Nonfiction, Science & Nature, Technology, Robotics, Aeronautics & Astronautics
Cover of the book The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781301033881
Publisher: Progressive Management Publication: February 21, 2013
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781301033881
Publisher: Progressive Management
Publication: February 21, 2013
Imprint: Smashwords Edition
Language: English

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

More books from Progressive Management

Cover of the book 2012 Guide to Natural Gas Hydraulic Fracturing from Shale Formations: Improving the Safety and Performance of Hydraulic Fracturing and Fracking by Progressive Management
Cover of the book North Korea in Perspective: Orientation Guide and North Korean Cultural Orientation: Geography, History, Economy, Security, Pyongyang, Goguryo, Silla Dynasty, Chosun, Kim Dynasty, Kim Jong Un, Yalu by Progressive Management
Cover of the book Complete Guide to Women in Military Combat: Implementation of the Decision to Open All Ground Combat Units to Women, Cultural Issues, Congressional Action, Army Plans and Actions, Impact on Marines by Progressive Management
Cover of the book One Valley at a Time - Success Story of the Afghanistan Counterinsurgency (COIN) Campaign Against Taliban and al-Qaeda Terrorists, Special Operations Forces (SOF), Civil Military Operations (CMO) by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: The U.S. Army Training and Doctrine Command Concept Development Guide - TRADOC Pamphlet 71-20-3 (Professional Format Series) by Progressive Management
Cover of the book People's Liberation Army After Next: China's PLA, Air Force Aircraft, Ballistic and Cruise Missiles, EMP, DF-11, DF-15, Silkworm, Fighter Aircraft, Taiwan, Advanced Technology, Military Space by Progressive Management
Cover of the book Nuclear Matters Handbook, Expanded Edition: Guide to American Nuclear Weapons, History, Testing, Safety and Security, Plans, Delivery Systems, Physics and Bomb Designs, Effects, Accident Response by Progressive Management
Cover of the book 21st Century FEMA Study Course: National Disaster Medical System (NDMS) Federal Coordinating Center Operations Course (IS-1900) - Part of National Response Plan (NRP) by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Non-Hodgkin Lymphoma (NHL) including Burkitt Lymphoma and Others - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book The Unauthorized Movement of Nuclear Weapons and Mistaken Shipment of Classified Missile Components: An Assessment - USSTRATCOM, Root Cause Analysis, Doom 99 B-52 Mission, McPeak, Rumsfeld by Progressive Management
Cover of the book 21st Century FEMA Study Course: Livestock in Disasters (IS-111) - For Farmers, Extension Agents - Cattle, Pigs, Poultry, Floods, Storms by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Air Force CV-22 Osprey Tiltrotor VTOL Aircraft - Operations Procedures, Aircrew Evaluation Criteria, Aircrew Training Flying Operations by Progressive Management
Cover of the book Rockets and People, Volume I - Memoirs of Russian Space Pioneer Boris Chertok, Early Years Through World War II, Nazi Missile Technology (NASA SP-2005-4110) by Progressive Management
Cover of the book Special Operations Forces Interagency Counterterrorism Reference Manual: Comprehensive Guide to U.S. and Other Agencies, Organizations, and Programs including NGOs, Overseas, and Private Groups by Progressive Management
Cover of the book Wildland Fire in Ecosystems: Fire and Nonnative Invasive Plants (Rainbow Series) Part 1 - Invasion Ecology, Use of Fire to Control Plants, Northeast, Southeast, Central, West Bioregions by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy