The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems

Nonfiction, Science & Nature, Technology, Robotics, Aeronautics & Astronautics
Cover of the book The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781301033881
Publisher: Progressive Management Publication: February 21, 2013
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781301033881
Publisher: Progressive Management
Publication: February 21, 2013
Imprint: Smashwords Edition
Language: English

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

More books from Progressive Management

Cover of the book 21st Century U.S. Military Manuals: Opposing Force Doctrinal Framework and Strategy Field Manual - FM 7-100 (Value-Added Professional Format Series) by Progressive Management
Cover of the book Gangs and Crime in America: Mara Salvatrucha MS-13 Transnational Central American Street Gang as a Threat to National Security, El Salvadoran Refugees, Terrorism, Organized Crime, Law Enforcement Role by Progressive Management
Cover of the book Increasing Uncertainty: The Dangers of Relying on Conventional Forces for Nuclear Deterrence - Critique of the Nuclear Posture Review, Global Zero, Risk of Conventional Prompt Global Strike Missiles by Progressive Management
Cover of the book Space Shuttle NASA Mission Reports: 1998 Missions, STS-89, STS-90, STS-91, STS-95, STS-88 by Progressive Management
Cover of the book Nuclear Navy: The U.S. Naval Nuclear Propulsion Program - Submarines, Aircraft Carriers, Shipyards, Support Facilities and Tenders, Training Program, History of First Nuclear Propulsion Plants by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Joint Officer Handbook (JOH) Staffing and Action Guide - Business and Professional Skills, Military Knowledge, Lifelong Learning, Useful Support Information by Progressive Management
Cover of the book Air Power and the Ground War in Vietnam: Ideas and Actions - Counterinsurgency, Air Power Theories, Secret Bombing, Supporting Ground Combat Forces, Gunships, Interservice Differences by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Malignant Mesothelioma - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book Coalition Air Warfare in the Korean War 1950-1953: Proceedings of Air Force Historical Foundation Symposium - Air Superiority, Bombardment, Interdiction, Support of Ground Forces, Logistics, Recon by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: The Soldier's Blue Book - The Guide for Initial Entry Training Soldiers, TRADOC 600-4, Basic Combat Training, Standards of Conduct (Professional Format Series) by Progressive Management
Cover of the book The War in South Vietnam: The Years of the Offensive 1965-1968 - The United States Air Force in Southeast Asia - B-52 Bomber, Deployments and Air Operations, Refinements of Aircraft and Munitions by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Antiarmor Operations Marine Corps Field Manual (Value-Added Professional Format Series) by Progressive Management
Cover of the book 21st Century End Stage Renal Disease and Kidney Failure Sourcebook: Clinical Data for Patients, Families, and Physicians - Chronic Kidney Disease (CKD), Glomerulonephritis, Dialysis, Transplant by Progressive Management
Cover of the book The Rules of Defeat: The Impact of Aerial Rules of Engagement (ROE) on USAF Operations in North Vietnam, 1965-1968, Effect on Commanders and Aircrews, Rolling Thunder Bombing Mission Effectiveness by Progressive Management
Cover of the book Analytic Culture in the U.S. Intelligence Community: An Ethnographic Study - Working as an Intelligence Analyst, Central Intelligence Agency (CIA) Intelligence Papers by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy