The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310861543
Publisher: Progressive Management Publication: April 29, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310861543
Publisher: Progressive Management
Publication: April 29, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

More books from Progressive Management

Cover of the book History of Research in Space Biology and Biodynamics at Air Force Missile Development Center, Holloman AFB, 1946: 1958 - V-2 Rockets, Balloons, Man-High, Monkeys in Space, Kittinger, Zero Gravity by Progressive Management
Cover of the book North Korea: Economic Leverage and Policy Analysis - Juche Philosophy and the Military, Nuclear Six-Party Talks, DPRK Economy, China Investment, Kaesong Industrial Complex, Source of Funds by Progressive Management
Cover of the book Air Force Targeting Roadmap: Reinvigorating Targeting, Reachback and Distributed Operations, Systems, Tools, Architectures, Training, Force Management, Precision Munition Bombing Air Campaign by Progressive Management
Cover of the book 2014 Defense Department China Military and Security Report: People's Liberation Army (PLA), Space and Missiles, Force Modernization, Technology, Taiwan, Air Defenses, First Aircraft Carrier by Progressive Management
Cover of the book Operationalizing the Impossible: The Responsibility to Protect (R2P) Movement - Ending Genocide Through Prevention and Military Intervention, Cast Study of Rwanda, Bosnia, Humanitarian Intervention by Progressive Management
Cover of the book Like a Thunderbolt: The Lafayette Escadrille and the Advent of American Pursuit in World War I - Sopwith Camel, American Pilots, Aces, William Thaw, Foulois by Progressive Management
Cover of the book John A. Lejeune, The Marine Corps' Greatest Strategic Leader: USMC Commandant, Amphibious and Expeditionary Warfare, Military After World War I, Greatest of All Leathernecks, Marine's Marine by Progressive Management
Cover of the book Energy for the Warfighter: Military Operational Energy Strategy, Navy Energy Program for Security and Independence, Navy Energy Vision for the 21st Century by Progressive Management
Cover of the book Examining Cyber Command Structures - History of Air and Space Domains, Nuclear Weapons Mission, Alternative Force Structures for Cyber Command and Control (C2), USCYBERCOM by Progressive Management
Cover of the book Genocide and Airpower: Holocaust, Interventions on Humanitarian Grounds, Somalia, Bosnia, Kosovo, Iraq, Darfur, Defining Genocide, Nuremberg, Convention, United Nations Action, ISR Support by Progressive Management
Cover of the book Military Chaplains as Peace Builders: Embracing Indigenous Religions in Stability Operations - Proposal for Expanded Role as Religious Liaisons for Local Cultural Relationships, Promotion of Goodwill by Progressive Management
Cover of the book Indonesia in Perspective: Orientation Guide and Javanese, Bahasa Cultural Orientation: Geography, History, Economy, Security, Jakarta, Sukarno, Bali, Nusa Tenggara, Kalimantan, Sulawesi, Papua by Progressive Management
Cover of the book Inside the International Space Station (ISS): NASA Independent Safety Task Force Final Report and Long-Term ISS Risk Reduction Activities - Loss of Crewmember, Destruction, Abandonment, Crew Health by Progressive Management
Cover of the book Whither Space Power? Forging a Strategy for the New Century: Future Space Warfare Scenarios and Options for Space Security by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - U.S. Military Forces and Police Assistance in Stability Operations: The Least-Worst Option to Fill the U.S. Capacity Gap by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy