Tissue Engineering and Wound Healing: A Short Case Study

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Other Sciences, Applied Sciences
Cover of the book Tissue Engineering and Wound Healing: A Short Case Study by Emmet Tobin, Emmet Tobin
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emmet Tobin ISBN: 9781311848789
Publisher: Emmet Tobin Publication: June 12, 2016
Imprint: Smashwords Edition Language: English
Author: Emmet Tobin
ISBN: 9781311848789
Publisher: Emmet Tobin
Publication: June 12, 2016
Imprint: Smashwords Edition
Language: English

This eBook aims to provide a summary of the guiding themes along with some simple methodologies in (i) Tissue engineering and regenerative medicine and (ii) factors that influence the re-epithelial and tissue regeneration in wound healing. Tissue engineering involves the application of biological and engineering principles to achieve the repair, regeneration or replacement of failing or damaged organs. This dissertation examines the role of the extracellular matrix proteins, collagen and fibronectin along with transforming growth factor ß-3 (TGF ß-3) in skin tissue engineering and wound repair. The biological mechanisms associated with the ‘taking of grafts’ and normal wound healing is examined. Experimental studies investigated the role of transforming growth factor ß-3 on cell behaviour in combination with extracellular matrix patterns of collagen and fibronectin. Differences in the cell behaviour ‘in vitro’ can be attributed to the interaction of different protein-specific integrins during cell-cell and cell-matrix attachment.
Detachment studies of protein treated surfaces and cells illustrated the variation in detachment times of collagen and fibronectin and TGF- β-3 treated culture flasks.
The use of skin substitutes is still not widespread and lacks a ‘one-step process’. Various short comings were identified such as high costs; susceptibility to infection and long lead times which all diminish the effectiveness of skin replacements.

Cell guidance and behaviour directly impact upon the healing mechanisms and scarring profiles in skin tissue. With a deeper understanding of Cellular communication, the immune system, wound repair, and current skin equivalents we can develop skin substitutes to better mimic native tissue and also optimise conditions for favourable wound closure and scar resolution.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This eBook aims to provide a summary of the guiding themes along with some simple methodologies in (i) Tissue engineering and regenerative medicine and (ii) factors that influence the re-epithelial and tissue regeneration in wound healing. Tissue engineering involves the application of biological and engineering principles to achieve the repair, regeneration or replacement of failing or damaged organs. This dissertation examines the role of the extracellular matrix proteins, collagen and fibronectin along with transforming growth factor ß-3 (TGF ß-3) in skin tissue engineering and wound repair. The biological mechanisms associated with the ‘taking of grafts’ and normal wound healing is examined. Experimental studies investigated the role of transforming growth factor ß-3 on cell behaviour in combination with extracellular matrix patterns of collagen and fibronectin. Differences in the cell behaviour ‘in vitro’ can be attributed to the interaction of different protein-specific integrins during cell-cell and cell-matrix attachment.
Detachment studies of protein treated surfaces and cells illustrated the variation in detachment times of collagen and fibronectin and TGF- β-3 treated culture flasks.
The use of skin substitutes is still not widespread and lacks a ‘one-step process’. Various short comings were identified such as high costs; susceptibility to infection and long lead times which all diminish the effectiveness of skin replacements.

Cell guidance and behaviour directly impact upon the healing mechanisms and scarring profiles in skin tissue. With a deeper understanding of Cellular communication, the immune system, wound repair, and current skin equivalents we can develop skin substitutes to better mimic native tissue and also optimise conditions for favourable wound closure and scar resolution.

More books from Applied Sciences

Cover of the book Unimolecular and Supramolecular Electronics I by Emmet Tobin
Cover of the book La forma dello spazio profondo by Emmet Tobin
Cover of the book Dimensionless Physical Quantities in Science and Engineering by Emmet Tobin
Cover of the book L'œuvre scientifique et les réalisations économiques dans l'Arctique soviétique by Emmet Tobin
Cover of the book Measurement and Probability by Emmet Tobin
Cover of the book The Physics of Baseball by Emmet Tobin
Cover of the book Deep Frying by Emmet Tobin
Cover of the book L'Industrie automobile by Emmet Tobin
Cover of the book Phasmophobia by Emmet Tobin
Cover of the book The Advanced Chemistry Series: Chromatography Principles and Optimisation Techniques by Emmet Tobin
Cover of the book 從輪子到諾貝爾:學校沒教的創新發明 by Emmet Tobin
Cover of the book Practical Handbook of Soybean Processing and Utilization by Emmet Tobin
Cover of the book Flow-Induced Vibrations: An Engineering Guide by Emmet Tobin
Cover of the book Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements by Emmet Tobin
Cover of the book Models of Calcium Signalling by Emmet Tobin
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy