Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Nonfiction, Health & Well Being, Medical, Medical Science, Genetics, Specialties, Oncology
Cover of the book Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642451980
Publisher: Springer Berlin Heidelberg Publication: March 12, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783642451980
Publisher: Springer Berlin Heidelberg
Publication: March 12, 2014
Imprint: Springer
Language: English

During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.

More books from Springer Berlin Heidelberg

Cover of the book High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging by
Cover of the book Diagnose-Schock: Krebs by
Cover of the book Five Decades of Tackling Models for Stiff Fluid Dynamics Problems by
Cover of the book Skin Models by
Cover of the book Paediatric Oncology by
Cover of the book Persönlichkeitspsychologie für Bachelor by
Cover of the book Instrument Development for Atmospheric Research and Monitoring by
Cover of the book Solid State NMR by
Cover of the book Fullerenes and Other Carbon-Rich Nanostructures by
Cover of the book Adaptive, tolerant and efficient composite structures by
Cover of the book CT of the Acute Abdomen by
Cover of the book Internetrecht im E-Commerce by
Cover of the book Petrology and Genesis of Leucite-Bearing Rocks by
Cover of the book Riemannian Geometry by
Cover of the book Classical Mechanics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy