Transformation Wave Physics

Electromagnetics, Elastodynamics, and Thermodynamics

Nonfiction, Science & Nature, Technology, Lasers, Science, Physics, Thermodynamics, Material Science
Cover of the book Transformation Wave Physics by , Jenny Stanford Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781315341088
Publisher: Jenny Stanford Publishing Publication: November 18, 2016
Imprint: Jenny Stanford Publishing Language: English
Author:
ISBN: 9781315341088
Publisher: Jenny Stanford Publishing
Publication: November 18, 2016
Imprint: Jenny Stanford Publishing
Language: English

Space–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat’s principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks.

This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Space–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat’s principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks.

This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.

More books from Jenny Stanford Publishing

Cover of the book Biosensors by
Cover of the book Mysteries in Muscle Contraction by
Cover of the book Hydrophobic and Superhydrophobic Organic‐Inorganic Nano‐Hybrids by
Cover of the book Sparks from the Spirit by
Cover of the book Spin Wave Confinement by
Cover of the book Learning Approaches in Signal Processing by
Cover of the book Tuning Innovation with Biotechnology by
Cover of the book Mass Spectrometry by
Cover of the book Broadband Metamaterials in Electromagnetics by
Cover of the book Spin Chemical Physics of Graphene by
Cover of the book Nanocomposites for Pollution Control by
Cover of the book Nanotechnology and Energy by
Cover of the book Ruthenium Chemistry by
Cover of the book Laser Cooling by
Cover of the book Subtlety in Relativity by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy