Uncertainty in Biology

A Computational Modeling Approach

Nonfiction, Computers, Advanced Computing, Computer Science, Science & Nature, Technology, Engineering, Health & Well Being, Medical
Cover of the book Uncertainty in Biology by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319212968
Publisher: Springer International Publishing Publication: October 26, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319212968
Publisher: Springer International Publishing
Publication: October 26, 2015
Imprint: Springer
Language: English

Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.

More books from Springer International Publishing

Cover of the book Linear Regression by
Cover of the book Forensic Interviews Regarding Child Sexual Abuse by
Cover of the book Creating the Future? The 1960s New English Universities by
Cover of the book Upper Middle Class Social Reproduction by
Cover of the book Ethics of Information and Communication Technologies by
Cover of the book Sartre in Cuba–Cuba in Sartre by
Cover of the book The Soils of Turkey by
Cover of the book Dynamics of Number Systems by
Cover of the book Multimodal Imaging in Uveitis by
Cover of the book Toward a New (Old) Theory of Responsibility: Moving beyond Accountability by
Cover of the book Micro and Nanomanufacturing Volume II by
Cover of the book Spectroscopy of Complex Oxide Interfaces by
Cover of the book Handbook of Genetic Programming Applications by
Cover of the book Maximum Principles and Geometric Applications by
Cover of the book Dermatological Atlas of Indigenous People by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy