VLSI Architectures for Modern Error-Correcting Codes

Nonfiction, Science & Nature, Technology, Electronics, Circuits
Cover of the book VLSI Architectures for Modern Error-Correcting Codes by Xinmiao Zhang, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Xinmiao Zhang ISBN: 9781351831222
Publisher: CRC Press Publication: December 19, 2017
Imprint: CRC Press Language: English
Author: Xinmiao Zhang
ISBN: 9781351831222
Publisher: CRC Press
Publication: December 19, 2017
Imprint: CRC Press
Language: English

Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity.

VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation.

The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included.

More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity.

VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation.

The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included.

More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.

More books from CRC Press

Cover of the book Polarimetric Radar Imaging by Xinmiao Zhang
Cover of the book Safety with Machinery by Xinmiao Zhang
Cover of the book English Houses by Xinmiao Zhang
Cover of the book Placenta Accreta Syndrome by Xinmiao Zhang
Cover of the book Hydrodynamic Forces by Xinmiao Zhang
Cover of the book Engineering Interventions in Sustainable Trickle Irrigation by Xinmiao Zhang
Cover of the book Molecular Methods in Plant Pathology by Xinmiao Zhang
Cover of the book The Patient as Text by Xinmiao Zhang
Cover of the book Fungal Virology by Xinmiao Zhang
Cover of the book Residential Satisfaction and Housing Policy Evolution by Xinmiao Zhang
Cover of the book Performance of Bituminous and Hydraulic Materials in Pavements by Xinmiao Zhang
Cover of the book Remote Sensing of the Mine Environment by Xinmiao Zhang
Cover of the book Progress in Maritime Technology and Engineering by Xinmiao Zhang
Cover of the book Veterinary Nursing Care Plans by Xinmiao Zhang
Cover of the book Geospatial Data Science Techniques and Applications by Xinmiao Zhang
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy