Wide-band-gap Semiconductors

Nonfiction, Science & Nature, Science, Physics, Electricity
Cover of the book Wide-band-gap Semiconductors by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780444599179
Publisher: Elsevier Science Publication: December 2, 2012
Imprint: North Holland Language: English
Author:
ISBN: 9780444599179
Publisher: Elsevier Science
Publication: December 2, 2012
Imprint: North Holland
Language: English

Wide-band-gap semiconductors have been a research topic for many decades. However, it is only in recent years that the promise for technological applications came to be realized; simultaneously an upsurge of experimental and theoretical activity in the field has been witnessed. Semiconductors with wide band gaps exhibit unique electronic and optical properties. Their low intrinsic carrier concentrations and high breakdown voltage allow high-temperature and high-power applications (diamond, SiC etc.). The short wavelength of band-to-band transitions allows emission in the green, blue, or even UV region of the spectrum (ZnSe, GaN, etc.). In addition, many of these materials have favorable mechanical and thermal characteristics.

These proceedings reflect the exciting progress made in this field. Successful p-type doping of ZnSe has recently led to the fabrication of blue-green injection lasers in ZnSe; applications of short-wavelength light-emitting devices range from color displays to optical storage. In SiC, advances in growth techniques for bulk as well as epitaxial material have made the commercial production of high-temperature and high-frequency devices possible. For GaN, refinement of growth procedures and new ways of obtaining doped material have resulted in blue-light-emitting diodes and opened the road to the development of laser diodes. Finally, while the quality of artificial diamond is not yet high enough for electronic applications, the promise it holds in terms of unique material properties is encouraging intense activity in the field.

This volume contains contributions from recognized experts presently working on different material systems in the field. The papers cover the theoretical, experimental and application-oriented aspects of this exciting topic.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Wide-band-gap semiconductors have been a research topic for many decades. However, it is only in recent years that the promise for technological applications came to be realized; simultaneously an upsurge of experimental and theoretical activity in the field has been witnessed. Semiconductors with wide band gaps exhibit unique electronic and optical properties. Their low intrinsic carrier concentrations and high breakdown voltage allow high-temperature and high-power applications (diamond, SiC etc.). The short wavelength of band-to-band transitions allows emission in the green, blue, or even UV region of the spectrum (ZnSe, GaN, etc.). In addition, many of these materials have favorable mechanical and thermal characteristics.

These proceedings reflect the exciting progress made in this field. Successful p-type doping of ZnSe has recently led to the fabrication of blue-green injection lasers in ZnSe; applications of short-wavelength light-emitting devices range from color displays to optical storage. In SiC, advances in growth techniques for bulk as well as epitaxial material have made the commercial production of high-temperature and high-frequency devices possible. For GaN, refinement of growth procedures and new ways of obtaining doped material have resulted in blue-light-emitting diodes and opened the road to the development of laser diodes. Finally, while the quality of artificial diamond is not yet high enough for electronic applications, the promise it holds in terms of unique material properties is encouraging intense activity in the field.

This volume contains contributions from recognized experts presently working on different material systems in the field. The papers cover the theoretical, experimental and application-oriented aspects of this exciting topic.

More books from Elsevier Science

Cover of the book The Dictionary of Cell & Molecular Biology by
Cover of the book The Boundaries of Consciousness: Neurobiology and Neuropathology by
Cover of the book The Pharmacology of Neurogenesis and Neuroenhancement by
Cover of the book 5G Physical Layer by
Cover of the book Structure and Functions of Contractile Proteins by
Cover of the book Catalytic Kinetics by
Cover of the book Confocal Scanning Optical Microscopy and Related Imaging Systems by
Cover of the book False Twist Textured Yarns by
Cover of the book Advances in Food Rheology and Its Applications by
Cover of the book Hack the Stack by
Cover of the book The Hands-on XBEE Lab Manual by
Cover of the book Advances in Applied Microbiology by
Cover of the book Physical Chemistry by
Cover of the book Cheese Problems Solved by
Cover of the book Advances in Experimental Social Psychology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy