Advances in Seed Priming

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Advances in Seed Priming by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811300325
Publisher: Springer Singapore Publication: June 7, 2018
Imprint: Springer Language: English
Author:
ISBN: 9789811300325
Publisher: Springer Singapore
Publication: June 7, 2018
Imprint: Springer
Language: English

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

More books from Springer Singapore

Cover of the book New Aspects of Quantum Electrodynamics by
Cover of the book Domain Specific High-Level Synthesis for Cryptographic Workloads by
Cover of the book Modular Load Flow for Restructured Power Systems by
Cover of the book Long-term effects of Learning English by
Cover of the book Transnational Tourism Experiences at Gallipoli by
Cover of the book Eastern Asian Population History and Contemporary Population Issues by
Cover of the book Geotechnics for Natural and Engineered Sustainable Technologies by
Cover of the book Proceedings of the Second International Conference on Computational Intelligence and Informatics by
Cover of the book Education, Ethnicity and Equity in the Multilingual Asian Context by
Cover of the book The Development of Renewable Energy Sources and its Significance for the Environment by
Cover of the book Neural Correlates of Quality During Perception of Audiovisual Stimuli by
Cover of the book Bio-Inspired Collaborative Intelligent Control and Optimization by
Cover of the book Indian Hotspots by
Cover of the book Economics of Urban Externalities by
Cover of the book Process-Aware Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy