Advances in Seed Priming

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Advances in Seed Priming by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811300325
Publisher: Springer Singapore Publication: June 7, 2018
Imprint: Springer Language: English
Author:
ISBN: 9789811300325
Publisher: Springer Singapore
Publication: June 7, 2018
Imprint: Springer
Language: English

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

More books from Springer Singapore

Cover of the book Modeling, Analysis and Control of Hydraulic Actuator for Forging by
Cover of the book Global Teachers, Australian Perspectives by
Cover of the book Mobile Learning in Higher Education in the Asia-Pacific Region by
Cover of the book Uncertain Renewal Processes by
Cover of the book Legislation of Tort Liability Law in China by
Cover of the book Urban Morphology and Housing Market by
Cover of the book Smart and Innovative Trends in Next Generation Computing Technologies by
Cover of the book Making Smart Cities More Playable by
Cover of the book Understanding China's Overcapacity by
Cover of the book Advanced Computational Methods in Life System Modeling and Simulation by
Cover of the book Moving INTO the Classroom by
Cover of the book Wireless Indoor Localization by
Cover of the book Marine Pollution and Microbial Remediation by
Cover of the book “Internet Plus” Pathways to the Transformation of China’s Property Sector by
Cover of the book Ad Hoc Networks by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy