Apollo and America's Moon Landing Program: Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle (NASA SP-2004-4535) - Design and Development, LLTV, Armstrong

Nonfiction, Science & Nature, Science, Physics, Astronomy, History, Americas
Cover of the book Apollo and America's Moon Landing Program: Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle (NASA SP-2004-4535) - Design and Development, LLTV, Armstrong by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465991911
Publisher: Progressive Management Publication: December 10, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465991911
Publisher: Progressive Management
Publication: December 10, 2011
Imprint: Smashwords Edition
Language: English

This official NASA history document - converted for accurate flowing-text e-book format reproduction - is the complete story of the important training vehicle for the Apollo moon landings, the Lunar Landing Research Vehicle (LLRV) and the later version, the Lunar Landing Training Vehicle (LLTV). In the foreword, Neil Armstrong writes:

"Unconventional, Contrary, & Ugly: The Lunar Landing Research Vehicle tells the complete story of this remarkable machine, the Lunar Landing Research Vehicle, including its difficulties, its successes, and its substantial contribution to the Apollo program. The authors are engineers who were at the heart of the effort. They tell the tale that they alone know and can describe. Six crews landed their Lunar Modules on the moon. They landed on the dusty sands of the Sea of Tranquility and the Ocean of Storms. They landed in the lunar highlands at Fra Mauro and on the Cayley Plains. They landed near the Apennine and Taurus Mountains. Each landing, in widely different topography, was performed safely under the manual piloting of the flight commander. During no flight did pilots come close to sticking a landing pad in a crater or tipping the craft over. That success is due, in no small measure, to the experience and confidence gained in the defining research studies and in the pilot experience and training provided by the LLRV and LLTV. Someday men will return to the moon. When they do, they are quite likely to need the knowledge, the techniques, and the machine described in this volume."

When the United States began considering a piloted voyage to the moon, an enormous number of unknowns about strategies, techniques, and equipment existed. Some people began wondering how a landing maneuver might be performed on the lunar surface.

From the beginning of the age of flight, landing has been among the most challenging of flight maneuvers. Touching down smoothly has been the aim of pilots throughout the first century of flight. Designers have sought the optimum aircraft configuration for landing. Engineers have sought the optimum sensors and instruments for best providing the pilot with the information needed to perform the maneuver efficiently and safely. Pilots also have sought the optimum trajectory and control techniques to complete the approach and touchdown reliably and repeatably.

Landing a craft on the moon was, in a number of ways, quite different from landing on Earth. The lunar gravitational field is much weaker than Earth's. There were no runways, lights, radio beacons, or navigational aids of any kind. The moon had no atmosphere. Airplane wings or helicopter rotors would not support the craft. The type of controls used conventionally on Earth-based aircraft could not be used. The lack of an atmosphere also meant that conventional flying instrumentation reflecting airspeed and altitude, and rate of climb and descent, would be useless because it relied on static and dynamic air pressure to measure changes, something lacking on the moon's surface.

Lift could be provided by a rocket engine, and small rocket engines could be arranged to control the attitude of the craft. But what trajectories should be selected? What type of steering, speed, and rate-of-descent controls should be provided? What kind of sensors could be used? What kind of instruments would provide helpful information to the pilot? Should the landing be performed horizontally on wheels or skids, or vertically? How accurately would the craft need to be positioned for landing? What visibility would the pilot need, and how could it be provided?

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This official NASA history document - converted for accurate flowing-text e-book format reproduction - is the complete story of the important training vehicle for the Apollo moon landings, the Lunar Landing Research Vehicle (LLRV) and the later version, the Lunar Landing Training Vehicle (LLTV). In the foreword, Neil Armstrong writes:

"Unconventional, Contrary, & Ugly: The Lunar Landing Research Vehicle tells the complete story of this remarkable machine, the Lunar Landing Research Vehicle, including its difficulties, its successes, and its substantial contribution to the Apollo program. The authors are engineers who were at the heart of the effort. They tell the tale that they alone know and can describe. Six crews landed their Lunar Modules on the moon. They landed on the dusty sands of the Sea of Tranquility and the Ocean of Storms. They landed in the lunar highlands at Fra Mauro and on the Cayley Plains. They landed near the Apennine and Taurus Mountains. Each landing, in widely different topography, was performed safely under the manual piloting of the flight commander. During no flight did pilots come close to sticking a landing pad in a crater or tipping the craft over. That success is due, in no small measure, to the experience and confidence gained in the defining research studies and in the pilot experience and training provided by the LLRV and LLTV. Someday men will return to the moon. When they do, they are quite likely to need the knowledge, the techniques, and the machine described in this volume."

When the United States began considering a piloted voyage to the moon, an enormous number of unknowns about strategies, techniques, and equipment existed. Some people began wondering how a landing maneuver might be performed on the lunar surface.

From the beginning of the age of flight, landing has been among the most challenging of flight maneuvers. Touching down smoothly has been the aim of pilots throughout the first century of flight. Designers have sought the optimum aircraft configuration for landing. Engineers have sought the optimum sensors and instruments for best providing the pilot with the information needed to perform the maneuver efficiently and safely. Pilots also have sought the optimum trajectory and control techniques to complete the approach and touchdown reliably and repeatably.

Landing a craft on the moon was, in a number of ways, quite different from landing on Earth. The lunar gravitational field is much weaker than Earth's. There were no runways, lights, radio beacons, or navigational aids of any kind. The moon had no atmosphere. Airplane wings or helicopter rotors would not support the craft. The type of controls used conventionally on Earth-based aircraft could not be used. The lack of an atmosphere also meant that conventional flying instrumentation reflecting airspeed and altitude, and rate of climb and descent, would be useless because it relied on static and dynamic air pressure to measure changes, something lacking on the moon's surface.

Lift could be provided by a rocket engine, and small rocket engines could be arranged to control the attitude of the craft. But what trajectories should be selected? What type of steering, speed, and rate-of-descent controls should be provided? What kind of sensors could be used? What kind of instruments would provide helpful information to the pilot? Should the landing be performed horizontally on wheels or skids, or vertically? How accurately would the craft need to be positioned for landing? What visibility would the pilot need, and how could it be provided?

More books from Progressive Management

Cover of the book 1776: A Critical Time in the American Revolution: Initiative and Leadership of George Washington, Continental Congress, American and British Forces, Strategic Setting, Long Island and Trenton Battles by Progressive Management
Cover of the book The Revolutionary War (War of American Independence): Timeline of the American Revolution, Featuring the Content of Original Documents by George Washington, Continental Congress, Thomas Paine, Others by Progressive Management
Cover of the book 21st Century Textbooks of Military Medicine - Military Medical Ethics (Two Volumes) - Foundations and Theories, Practical Examples, Nazi and Japanese Human Experiments (Emergency War Surgery Series) by Progressive Management
Cover of the book Information Sharing Between the U.S. Department of State and the U.S. Army: Using Knowledge Management (KM) Technology and Tools to Bridge the Gap - Covering Interagency Cooperation, Wikileaks Impact by Progressive Management
Cover of the book In Every Clime and Place: U.S. Marine Corps (USMC) Cold Weather Doctrine - Winter Warfare Training, World War II German Northern Theater, Korean War Chosin Reservoir, NATO Exercise Cold Winter 1985 by Progressive Management
Cover of the book Ideas in Arms: Relationship of Kinetic and Ideological Means in America's Global War on Terror, al-Qaeda, Clausewitzian Effectiveness, Operation Enduring Freedom, Detrimental Effects of Kinetic Means by Progressive Management
Cover of the book X-15: Extending the Frontiers of Flight - Encyclopedic History of America's First Hypersonic Rocket-powered Aircraft and Space Plane - Million Horsepower Engine, Muroc, Edwards AFB (Part 2) by Progressive Management
Cover of the book Council of War: A History of the Joint Chiefs of Staff 1942-1991 - War in Europe, Atomic Era, H-Bomb Decision, Cold War, Missile Gap, BMD, Cuban Missile Crisis, Vietnam, Iran Hostage Rescue, Iraq by Progressive Management
Cover of the book Armageddon's Lost Lessons: Combined Arms Operations in Allenby's Palestine Campaign - 1918 World War I Rout of Turkish Forces at Battle of Megiddo, Foreshadowing of German Blitzkrieg in World War II by Progressive Management
Cover of the book Major General Leonard Wood: A Study of Leadership in an Army in Transition - Frontier Surgeon, Rough Riders, Cuba, Philippines, Confrontation with President Wilson, Stimson, World War I, Pershing by Progressive Management
Cover of the book Air Force Reports on the Cause of F-22 Raptor Unexplained Physiological Incidents, Hypoxia, and Aircraft Oxygen Generation Systems (OBOGS), Air Force and Navy AOG Systems by Progressive Management
Cover of the book Marines in World War II Commemorative Series: Liberation: Marines in the Recapture of Guam, Operation Forager, Medal of Honor Recipients, Fonte Ridge, General Cushman, Colt Pistol, War Dogs by Progressive Management
Cover of the book History of the Joint Chiefs of Staff: The War in Vietnam 1969-1970 - Nixon Takes Over, Atrocities, Invasion of Cambodia, Vietnamization and Pacification, PHOENIX Program, Ho Chi Minh by Progressive Management
Cover of the book 2011 Navy Program Guide: Key Systems, Programs, Initiatives including Ships, Submarines, Aircraft, Carriers, Weapons, Electronics, Sensors, Surface Combatants, Expeditionary Forces, Data Systems by Progressive Management
Cover of the book Crisis Fleeting: Original Reports on Military Medicine in India and Burma in the Second World War - Chinese Liaison Detail, With Wingate's Chindits, Record of Heedless Valor, Marauders and Microbes by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy