Big Data in Omics and Imaging

Association Analysis

Nonfiction, Science & Nature, Science, Biological Sciences, Biotechnology, Mathematics, Statistics, Biology
Cover of the book Big Data in Omics and Imaging by Momiao Xiong, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Momiao Xiong ISBN: 9781315353418
Publisher: CRC Press Publication: December 1, 2017
Imprint: Chapman and Hall/CRC Language: English
Author: Momiao Xiong
ISBN: 9781315353418
Publisher: CRC Press
Publication: December 1, 2017
Imprint: Chapman and Hall/CRC
Language: English

Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data.

FEATURES

Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data

Provides tools for high dimensional data reduction

Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection

Provides real-world examples and case studies

Will have an accompanying website with R code

The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data.

FEATURES

Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data

Provides tools for high dimensional data reduction

Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection

Provides real-world examples and case studies

Will have an accompanying website with R code

The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.

 

More books from CRC Press

Cover of the book Puppetry, Puppet Animation and the Digital Age by Momiao Xiong
Cover of the book Understanding Human Error in Mine Safety by Momiao Xiong
Cover of the book Risk Management and Error Reduction in Aviation Maintenance by Momiao Xiong
Cover of the book Fundamentals of Radio Astronomy by Momiao Xiong
Cover of the book Quantum Effects in Tribology by Momiao Xiong
Cover of the book Nonlinear Dynamics of Structures Under Extreme Transient Loads by Momiao Xiong
Cover of the book Driver Behaviour and Training: Volume 2 by Momiao Xiong
Cover of the book Communication in Construction Teams by Momiao Xiong
Cover of the book Tissue Type Plasminogen Activity by Momiao Xiong
Cover of the book 3D Game Environments by Momiao Xiong
Cover of the book Humanising Psychiatry and Mental Health Care by Momiao Xiong
Cover of the book Handbook of Geophysical Exploration at Sea by Momiao Xiong
Cover of the book Artificial Intelligence and Soft Computing by Momiao Xiong
Cover of the book Metal Ions in Biological Systems by Momiao Xiong
Cover of the book Principles and Applications of Chemical Defects by Momiao Xiong
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy