Author: | ISBN: | 9780444595904 | |
Publisher: | Elsevier Science | Publication: | September 5, 2014 |
Imprint: | Elsevier | Language: | English |
Author: | |
ISBN: | 9780444595904 |
Publisher: | Elsevier Science |
Publication: | September 5, 2014 |
Imprint: | Elsevier |
Language: | English |
Biophysical Characterization of Proteins in Developing Biopharmaceuticals is concerned with the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure this book takes the reader on a journey on how to best achieve this goal using the key relevant and practical methods commonly employed in the biopharmaceutical industry today as well as up and coming promising methods that are now gaining increasing attention.
As a general resource guide this book has been written with the intent to help today’s industrial scientists working in the biopharmaceutical industry or the scientists of tomorrow who are planning a career in this industry on how to successfully implement these biophysical methodologies. In so doing a keen focus is placed on understanding the capability of these methodologies in terms of what information they can deliver. Aspects of how to best acquire this biophysical information on these very complex drug molecules, while avoiding potential pitfalls, in order to make concise, well informed productive decisions about their development are key points that are also covered.
Biophysical Characterization of Proteins in Developing Biopharmaceuticals is concerned with the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure this book takes the reader on a journey on how to best achieve this goal using the key relevant and practical methods commonly employed in the biopharmaceutical industry today as well as up and coming promising methods that are now gaining increasing attention.
As a general resource guide this book has been written with the intent to help today’s industrial scientists working in the biopharmaceutical industry or the scientists of tomorrow who are planning a career in this industry on how to successfully implement these biophysical methodologies. In so doing a keen focus is placed on understanding the capability of these methodologies in terms of what information they can deliver. Aspects of how to best acquire this biophysical information on these very complex drug molecules, while avoiding potential pitfalls, in order to make concise, well informed productive decisions about their development are key points that are also covered.