Computational Modeling in Tissue Engineering

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Technology, Engineering, Health & Well Being, Medical
Cover of the book Computational Modeling in Tissue Engineering by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642325632
Publisher: Springer Berlin Heidelberg Publication: October 30, 2012
Imprint: Springer Language: English
Author:
ISBN: 9783642325632
Publisher: Springer Berlin Heidelberg
Publication: October 30, 2012
Imprint: Springer
Language: English

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

More books from Springer Berlin Heidelberg

Cover of the book Cranial Meningiomas by
Cover of the book Ocean Circulation and Pollution Control - A Mathematical and Numerical Investigation by
Cover of the book Algorithms and Computation by
Cover of the book The Augmented Spherical Wave Method by
Cover of the book Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry by
Cover of the book Sensitivity Analysis for Neural Networks by
Cover of the book Contaminant Geochemistry by
Cover of the book Arbeits-, Organisations- und Personalpsychologie für Bachelor by
Cover of the book Biodiversity Hotspots by
Cover of the book Asian Punches by
Cover of the book Population Neuroscience by
Cover of the book Klassenmedizin by
Cover of the book Science, Technology and Innovation Policy for the Future by
Cover of the book The Nexus between Artificial Intelligence and Economics by
Cover of the book Temporal Variations of the Cardiovascular System by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy