Dark Web

Exploring and Data Mining the Dark Side of the Web

Business & Finance, Industries & Professions, Information Management, Nonfiction, Computers, Database Management, General Computing
Cover of the book Dark Web by Hsinchun Chen, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hsinchun Chen ISBN: 9781461415572
Publisher: Springer New York Publication: December 17, 2011
Imprint: Springer Language: English
Author: Hsinchun Chen
ISBN: 9781461415572
Publisher: Springer New York
Publication: December 17, 2011
Imprint: Springer
Language: English

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace.

This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace.

This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

More books from Springer New York

Cover of the book Self-Help in Mental Health by Hsinchun Chen
Cover of the book Distributed Space Missions for Earth System Monitoring by Hsinchun Chen
Cover of the book Insertional Mutagenesis Strategies in Cancer Genetics by Hsinchun Chen
Cover of the book Copper Wire Bonding by Hsinchun Chen
Cover of the book Computational Biomechanics for Medicine by Hsinchun Chen
Cover of the book Pathobiology of the Human Atherosclerotic Plaque by Hsinchun Chen
Cover of the book Stalking the Wild Sweetgrass by Hsinchun Chen
Cover of the book Time-Domain Ultra-Wideband Radar, Sensor and Components by Hsinchun Chen
Cover of the book The Search for a Unified Korea by Hsinchun Chen
Cover of the book Experimental Hematology Today 1978 by Hsinchun Chen
Cover of the book The Coexistence of Genetically Modified, Organic and Conventional Foods by Hsinchun Chen
Cover of the book Multidimensional Item Response Theory by Hsinchun Chen
Cover of the book Discrete-Time Control System Design with Applications by Hsinchun Chen
Cover of the book Vascular Mechanisms in CNS Trauma by Hsinchun Chen
Cover of the book ART and the Human Blastocyst by Hsinchun Chen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy