Electromagnetics in Magnetic Resonance Imaging

Physical Principles, Related Applications, and Ongoing Developments

Nonfiction, Health & Well Being, Medical, Specialties, Radiology & Nuclear Medicine, Science & Nature, Science, Physics, General Physics
Cover of the book Electromagnetics in Magnetic Resonance Imaging by Christopher M. Collins, Morgan & Claypool Publishers
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Christopher M. Collins ISBN: 9781681741475
Publisher: Morgan & Claypool Publishers Publication: March 1, 2016
Imprint: IOP Concise Physics Language: English
Author: Christopher M. Collins
ISBN: 9781681741475
Publisher: Morgan & Claypool Publishers
Publication: March 1, 2016
Imprint: IOP Concise Physics
Language: English

In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.

More books from Morgan & Claypool Publishers

Cover of the book Designing Hybrid Nanoparticles by Christopher M. Collins
Cover of the book Experience Design by Christopher M. Collins
Cover of the book The VR Book by Christopher M. Collins
Cover of the book Computational Prediction of Protein Complexes from Protein Interaction Networks by Christopher M. Collins
Cover of the book Demystifying OWL for the Enterprise by Christopher M. Collins
Cover of the book Essential Classical Mechanics for Device Physics by Christopher M. Collins
Cover of the book Reading and Writing the Electronic Book by Christopher M. Collins
Cover of the book Crafting your Research Future by Christopher M. Collins
Cover of the book Infinite-Space Dyadic Green Functions in Electromagnetism by Christopher M. Collins
Cover of the book Ionization and Ion Transport by Christopher M. Collins
Cover of the book AdS/CFT Correspondence in Condensed Matter by Christopher M. Collins
Cover of the book Transforming Technologies to Manage Our Information by Christopher M. Collins
Cover of the book Quantum Chemistry by Christopher M. Collins
Cover of the book Understanding Sonoluminescence by Christopher M. Collins
Cover of the book Structure and Evolution of Single Stars by Christopher M. Collins
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy